Search This Blog

Wikipedia

Search results

Wednesday, July 30, 2014

Americans Aren't Sure If Trying To Contact Aliens Is Such A Great Idea

http://www.huffingtonpost.com/science

Posted: Updated:

ARICEBO

Humans have been searching for signs of life on other planets at least since the 1960s, when scientists began scanning the heavens for radio signals that might be evidence of extraterrestrial beings. Scientists even have tried to reach out to aliens by sending out radio messages, beginning with transmissions made in 1974.
But does it make sense for us to try to establish contact with alien life? A new HuffPost/YouGov poll shows that many Americans have their doubts.
It's not that Americans don't think intelligent life exists beyond Earth. Fifty percent think intelligent life is out there somewhere, the poll shows. Nineteen percent think there's no intelligent alien life, and 31 percent say they're not sure.
And 46 percent think it would be possible for humans to contact intelligent aliens. But only 37 percent think it's a good idea to try. Twenty-seven percent said it's a bad idea, while 36 percent aren't sure whether it's a good or bad ide

Thursday, July 24, 2014

America’s Top Threats in Space Are Lasers and Nukes

Gen. William Shelton, commander of Air Force Space Command, speaks about space and cyberspace at the Air Force Association Air Warfare symposium, on February 21, 2014.

The U.S. thought it won the space race long ago, but no victory lasts forever. On Tuesday, Gen. William Shelton, the commander of Air Force Space Command, speaking at the Atlantic Council, said that U.S. dominance in space will be confronted by some real threats in the years ahead. When Defense One asked what those threats might consist of specifically, he replied jammers, lasers and tactical space nukes.
The nature of these threats hasn’t evolved much since the publication of this 2001 report by the Commission to Assess Untied States National Security Space Management and Organization, chaired by former Defense Secretary Donald Rumsfeld. One of the chief findings of the commission was that U.S. reliance on space was going to grow—making U.S. satellites and space assets an increasingly attractive target for those who mean us harm.
But while the threats themselves haven’t changed in some 13 years, the technology behind them has made some more likely. Let’s take a look at each.

Jammers

Long before the global positioning system was helping people find their cars in mall parking lots, it was helping the U.S. find its nuclear submarines. The U.S. currently flies 31 GPS satellites at all times providing continuous coverage. To destroy GPS, a hostile force would have to attack individual satellites in the constellation. Jamming is a more attractive attack.
Jamming a signal to a particular GPS receiver on Earth requires the jammer to create a competing signal capable of overwhelming the original from the satellite. But the jamming device gives itself away in doing so. You can jam communication to the GPS system, called uplink jamming, but GPS attacks are easier when they disrupt the signal to Earth, referred to as downlink jamming.
(Find us on Facebook)
The U.S. hasn’t really experienced any GPS jamming threat on the battlefield, but that doesn’t mean that messing with GPS is without geopolitical significance. In 2012, North Korea launched a series of jamming attacks against the South, reportedly effecting the navigation equipment of hundreds of planes as well as ships (but with no crashes).
In fact, we’ve grown so reliant on GPS that any disruption in service would likely cause immediate alarm for millions of people. In the past several months, the Russian version of GPS, the GLONASS system, has incurred service problems—particularly in April—which quickly “got a lot of people’s attention,” said Shelton.
Radar and GPS jamming is a growing area of concern for the military, a point that the Department of Defense emphasizes in the Electromagnetic Spectrum Strategy document it released last year. The Army issued its first combined electromagnetic spectrum cyberwarfare field manual this year as well.

Directed Energy Weapons, AKA Lasers

High-energy-directed weapons to attack U.S. assets in space would come in two varieties, according to Shelton. The first would be a laser that fires a beam to disrupt a satellite’s ability to take pictures, or as Gen. Shelton put it “lasers that would dazzle an optical sensor.”
Yes, the effect is referred to as “dazzling.” Here’s a video of marines testing a weapon to dazzle a staged enemy:
This too is not a new issue, but a growing one. The FAA has considered delinquents with laser pointers and their potential to blind pilots a threat to air traffic for years.
Dazzling a camera can be a bit more tricky. But in 2006, a team from Georgia Tech demonstrated a laser that could automatically detect camera lenses (via the reflective properties of the charged coupled device) and then fire a beam into the lens. The effect for digital cameras was that all the capacitors in the bed received the same high charge, resulting in a picture of whiteness.
But can you send a light beam to space at high enough energy to blind a camera? In June, NASA demonstrated how this could work—but in reverse, when it beamed a 1,550 nanometer, 2.5-watt laser from the International Space Station to Earth in order to test a new, space-based communications technology called Optical Payload for Lasercomm Science (OPALS).
It’s incredible to see this magnificent beam of light arriving from our tiny payload on the space station,” Matt Abrahamson, OPALS mission manager at NASA’s Jet Propulsion Laboratory (JPL) remarked in a press release.
Getting a light beam coming from Earth to achieve the same effect upon reaching a satellite would be a matter of scaling up, which would be easier to do on the ground without the size, weight and other logistics complications imposed by operating in space.
The difference between a “dazzling” laser and one capable of actually destroying a satellite is energy. It has long been an area of fascination and concern for the U.S. government, and not without reason.
Since at least 1977, the former Soviet Union had a robust space laser program to test methods for shooting down American space assets. The most recent iteration of that project, the so-called Sokol-Eshelon (Falcon-Echelon), was ongoing as recently as 2012, according to Russian media sources.
As for arming space craft with lasers to shoot at Earth, the U.S. military stopped considering it back in 2002. However, the Defense Advanced Projects Research agency, DARPA, is currently funding a program called the High energy Liquid Laser Area Defense System, HELLADS, to outfit a plane with a defensive laser weapon to fight drones. And they just awarded funding for research into a reusable spaceplane, one that can serve the role of the defunct space shuttle at much less the cost. The winner of the latter contract was The Boeing Company (working with Jeff Bezo’s Blue Origin, LLC) Masten Space Systems (working with XCOR Aerospace) and Northrop Grumman Corporation (working with Richard Branson’s Virgin Galactic)
Below is a video from DARPA:
Cram all of that research together and a picture emerges of laser-armed military space ships—built by Jeff Bezos and Richard Branson—fighting a Russian Death Star.
What would the Russians target with their laser? The most valuable military prizes the U.S. has in orbit are probably our four Advanced Extremely High Frequency satellites. These make novel use of the electromagnetic spectrum to send emergency communications. “This is the constellation that the President would use in existential circumstances, to command and control nuclear forces and to ensure continuity of the United States government,” said Shelton. “If an adversary were to take out one, just one satellite in the constellation, a geographic hole is opened and we potentially have a situation where the president can’t communicate with forces in that part of the world.”
Of course, you don’t need a laser to take out an important satellite when a missile will do. Here, too, the U.S. was put on its toes back in 2007 when the Chinese successfully tested an anti-satellite missile. “Everyone was stunned by the boldness of the test, as well as the technical acumen it demonstrated,” said Shelton.

Space Nuclear Weapons

The loss of an advanced emergency communications satellite would look much less serious than a nuclear explosion in space. This, too, is a contingency the U.S. has long feared and anticipated, however unlikely.
“A high altitude nuclear burst… has prompt effects if you happen to be in the area but sustained effects because of what it does to the Van Allen [belts]. It pumps up the magnetic field around the Earth with charged particles and potentially, everything in low-Earth orbit has its electronics fried,” said Shelton
The Van Allen belts are the pen-ultimate and ultimate rings of electromagnetic radiation that encircle the Earth, full of highly-charged, fast-moving particles. Blasting the belts with charged electrons via a nuclear bomb explosion would increase the amount of ambient radiation that communications satellites in low Earth orbit are exposed to, potentially causing widespread failure. The United States discovered this the hard way in 1964 when they set off an atomic bomb blast in space, temporarily disabling as many as one third of the U.S. and Soviet satellites in low Earth orbit. The radiation could haunt the earth’s magnetic field for years, which would complicate satellite replacement.
Virtually any country with medium-ranged intercontinental ballistic missiles and nuclear capability could pull off such an attack. Today’s military satellites would be mostly unaffected. They’re required to be able to survive a nuclear event and ground assets aren’t considered vulnerable to an this sort of attack. But the effects of a space nuke on civil communication could have immediate, global and terrible financial consequences.
Shelton was careful to point out to Defense One that enough satellite redundancy is built into the system that no space-based attack would be crippling for the nation—neither in terms of intelligence gathering, the global positioning system, nor for military communications. But he did sound the alarm about “a potentially dire fiscal outlook for our space programs,” the result of continued pressure of sequestration. He said that he has already cut $1 billion from the budget in FY13 and FY14 combined and didn’t look forward to future cuts.
While a permanent position in space remains the domain of organized nation states, accelerating technologies could effect any and all of these areas. The space race isn’t a race that ever ends. It just gets faster.

How a solar storm two years ago nearly caused a catastrophe on Earth

http://www.washingtonpost.com/

Solar flare preceding CMEs on July 22, 2012 (NASA)
CME captured by NASA July 23, 2012 (NASA

On July 23, 2012, the sun unleashed two massive clouds of plasma that barely missed a catastrophic encounter with the Earth’s atmosphere.  These plasma clouds, known as coronal mass ejections (CMEs), comprised a solar storm thought to be the most powerful in at least 150 years.
“If it had hit, we would still be picking up the pieces,” physicist Daniel Baker of the University of Colorado tells NASA.

Via NASA: “This movie shows a coronal mass ejection (CME) on the sun from July 22, 2012 at 10:00 p.m. EDT until 2 a.m. on July 23 as captured by NASA’s Solar Terrestrial RElations Observatory-Ahead (STEREO-A). Because the CME headed in STEREO-A’s direction, it appears like a giant halo around the sun. NOTE: This video loops 3 times.” Credit: NASA/STEREO Fortunately, the blast site of the CMEs was not directed at Earth.  Had this event occurred a week earlier when the point of eruption was Earth-facing, a potentially disastrous outcome would have unfolded.
“I have come away from our recent studies more convinced than ever that Earth and its inhabitants were incredibly fortunate that the 2012 eruption happened when it did,” Baker tells NASA.  “If the eruption had occurred only one week earlier, Earth would have been in the line of fire.”

Video overview of July 23, 2012 solar storm A CME double whammy of this potency striking Earth would likely cripple satellite communications and could severely damage the power grid.  NASA offers this sobering assessment:
Analysts believe that a direct hit … could cause widespread power blackouts, disabling everything that plugs into a wall socket.  Most people wouldn’t even be able to flush their toilet because urban water supplies largely rely on electric pumps.
. . .
According to a study by the National Academy of Sciences, the total economic impact could exceed $2 trillion or 20 times greater than the costs of a Hurricane Katrina. Multi-ton transformers damaged by such a storm might take years to repair.
CWG’s Steve Tracton put it this way in his frightening overview of the risks of a severe solar storm: “The consequences could be devastating for commerce, transportation, agriculture and food stocks, fuel and water supplies, human health and medical facilities, national security, and daily life in general.”
Solar physicists compare the 2012 storm to the so-called Carrington solar storm of September 1859, named after English astronomer Richard Carrington who documented the event.   
“In my view the July 2012 storm was in all respects at least as strong as the 1859 Carrington event,” Baker tells NASA. “The only difference is, it missed.”
During the Carrington event, the northern lights were seen as far south as Cuba and Hawaii according to historical accounts.  The solar eruption “caused global telegraph lines to spark, setting fire to some telegraph offices,” NASA  notes.
NASA says the July 2012 storm was particularly intense because a CME had traveled along the same path just days before the July 23 double whammy – clearing the way for maximum effect, like a snowplow.
“This double-CME traveled through a region of space that had been cleared out by yet another CME four days earlier,” NASA says. ” As a result, the storm clouds were not decelerated as much as usual by their transit through the interplanetary medium.”
NASA’s online article about the science of this solar storm is well-worth the read.  Perhaps the scariest finding reported in the article is this:  There is a 12 percent chance of a Carrington-type event on Earth in the next 10 years according to Pete Riley of Predictive Science Inc.
“Initially, I was quite surprised that the odds were so high, but the statistics appear to be correct,” Riley tells NASA.  “It is a sobering figure.”
It’s even more sobering when considering the conclusion of Steve Tracton’s 2013 article: Are we ready yet for potentially disastrous impacts of space weather? Tracton’s answer: “an unequivocal, if not surprising, no!”

Saturday, July 19, 2014

Quasiparticles carry entanglement, breaking speed limits

In a new experimental system, the concept of "light cones" doesn't apply.

In a recent experiment, scientists were able to observe quasiparticles propagating across a string of ions, creating waves of quantum entanglement in their wake. Experiments like this one, which study systems with multiple quantum bodies, are crucial to learning about the behavior of quasiparticles and their interactions with more traditional particles.
It’s tempting to think that quasiparticles are not particles at all. Quasiparticles are “objects” that emerge within a complex system, such as a solid object. The collective behavior of the particles in the solid can create the impression of a new particle. The impression—or quasiparticle—moves through the solid as if it were a real particle moving through empty space, and it behaves according to the same rules.
Nevertheless, within their system, quasiparticles can have real effects on their environment. Most recently, scientists were able to track the propagation of quasiparticles called magnons through a collection of atoms. Now, scientists have been able to watch as that propagation changed the behavior of these atoms. And in the process, the quasiparticles reached speeds where a conventional model, which we use to understand time, breaks down.
To make these observations, the researchers lined up seven ions and targeted the fourth ion, exactly in the middle of the line, with a laser. The laser changes the ion’s quantum spin direction.
Changing the spin of the fourth (middle) ion sends out quasiparticles in both directions, much in the same way that a pebble, dropped into a pond, sends out a ripple in all directions.
John Timmer
In this case, the "quasiparticle" was essentially a wave of altered spin states. Before beginning the experiment, all ions had the same spin direction. But once the first ion’s spin had been reversed, it quickly changed the spins of the two ions that flanked it, starting a chain reaction—a wave, or quasiparticle, moving in each direction. The quasiparticles generated are called magnons.
As the two magnons moved away from the middle of the line, entanglement moved with them. That is, as the magnon moving to the right passed over ion 5, and as the one moving to the left passed over ion 3, ions 3 and 5 became entangled with each other.
The scientists were able to measure how the entanglement changed with time as the two magnons propagated away from each other. Their results agreed very closely with prediction—pairs of ions were briefly measured to be entangled as the pair of magnons moved over them, and then ceased to be entangled once the magnon was gone.
The experiment also had a second layer. The scientists were able to “tune” the range of interactions between the ions in the system. In other words, they could adjust how far one ion’s influence on its neighbors reaches. In the first part of the experiment, each ion’s spin essentially only influenced its immediate neighbors’. In the second, the researchers were able to adjust it so that the ions’ spin can jump over adjacent ions, changing the spins of more distant ones.
The resulting collective behavior of the ions still produced quasiparticles, but quasiparticles of a different sort, moving at a different speed. As they tuned the system to three different interaction ranges, the quasiparticles became faster and faster, ultimately approaching infinite speed.
Actual infinite speed is not possible, even in a quantum system, due to a speed limit called the Lieb-Robinson bound. The actual top speed of a quasiparticle may vary depending on the system it inhabits, but it is always finite. However, according to the researchers, the Lieb-Robinson bounds are “trivial” in certain circumstances, such as in their tuned system, meaning that there’s essentially no restriction on the speeds of the quasiparticles under certain circumstances.
The unbounded speed also breaks down conventional notions of time. A relativistic model called the light-cone is often used to understand time. Light-cones are graphs of the furthest light beams that can reach an object given a certain time. Nothing can travel faster than the speed of light, so only objects in the “past” part of an object’s light-cone can possibly transfer information to that object.
This model holds in the first part of the experiment, but once the researchers had tuned the interaction ranges of the ions, they found that the speeds of the quasiparticles were such that they could no longer be described in terms of light-cones.
The experiment is significant not only for its findings, which agree closely with prediction (and are the first time entanglement due to quasiparticles has been observed), but also because it lays the groundwork for many future avenues of study.
Experiments like this one, involving many-body systems, are crucial to our understanding of a wide range of quantum phenomena.
Nature, 2014. DOI: 10.1038/nature13461  (About DOIs).

Buk missile system

From Wikipedia, the free encyclopedia
9K37 Buk
NATO reporting name:
SA-11 Gadfly, SA-17 Grizzly
Buk-M1-2 air defence system in 2010
Buk-M1-2 air defence system in 2010
Type Medium range SAM system
Place of origin Soviet Union
Service history
In service 1979–present
Used by See list of present and former operators
Wars See combat service
Production history
Designer Almaz-Antey:
Tikhomirov NIIP (lead designer)
Lyulev Novator (SA missile designer)
MNIIRE Altair (naval version designer)
NIIIP (surveillance radar designer)
DNPP (missiles)
UMZ (TELARs)
MZiK (TELs)[1]
MMZ (GM chassis)
Variants 9K37 "Buk", 9K37M, 9K37M1 "Buk-M1", 9K37M1-2 "Buk-M1-2", 9K37M1-2A, 9K317 "Buk-M2", "Buk-M3"
naval: 3S90 (M-22), 3S90M, 3S90E1, 3S90M1
The Buk missile system (Russian: "Бук"; beech, /bʊk/) is a family of self-propelled, medium-range surface-to-air missile systems developed by the Soviet Union and its successor state, the Russian Federation, and designed to fight cruise missiles, smart bombs, fixed- and rotary-wing aircraft, and unmanned aerial vehicles.[2]
The Buk missile system is the successor to the NIIP/Vympel 2K12 Kub (NATO reporting name SA-6 "Gainful").[3] The first version of Buk adopted into service carried the GRAU designation 9K37 and was identified in the west with the NATO reporting name "Gadfly" as well as the US Department of Defense designation SA-11. Since its initial introduction into service the Buk missile system has been continually upgraded and refined. With the integration of a new missile the Buk-M1-2 and Buk-M2 systems also received a new NATO reporting name Grizzly and a new DoD designation SA-17. The latest incarnation "Buk-M3" is scheduled for production.[4]
A naval version of the system, designed by MNIIRE Altair (currently part of GSKB Almaz-Antey) for the Russian Navy, according to Jane's Missiles & Rockets, received the GRAU designation 3S90M1 and will be identified with the NATO reporting name Gollum and a DoD designation SA-N-7C. The naval system is scheduled for delivery in 2014.[5]
The apparent shootdown of Malaysia Airlines Flight 17 on July 17, 2014 is believed to have been caused by the Buk system, giving the weapon international attention.

Development

Development of the 9K37 "Buk" was started on 17 January 1972 at the request of the Central Committee of the CPSU.[6] The development team comprised many of the same institutions that had been responsible for the development of the previous 2K12 "Kub" (NATO reporting name "Gainful", SA-6). These included the Tikhomirov Scientific Research Institute of Instrument Design (NIIP) as the lead designer and the Novator design bureau who were responsible for the development of the missile armament.[6] In addition to the land based missile system a similar system was to be produced for the naval forces, the result being the 3S90 "Uragan" (Russian: "Ураган"; hurricane) which also carries the SA-N-7 and "Gadfly" designations


The Buk missile system was designed to surpass the 2K12 Kub in all parameters and its designers including its chief designer Ardalion Rastov visited Egypt in 1971 to see Kub in operation.[8] Both the Kub and Buk used self-propelled launchers developed by Ardalion Rastov. As a result of this visit the developers came to the conclusion that each Buk transporter erector launcher (TEL) should have its own fire control radar rather than being reliant on one central radar for the whole system as in Kub.[8] The result of this move from TEL to transporter erector launcher and radar (TELAR) was a system able to engage multiple targets from multiple directions at the same time.
During development in 1974, it was identified that although the Buk missile system is the successor to the Kub missile system both systems could share some interoperability, the result of this decision was the 9K37-1 Buk-1 system.[6] The advantage of interoperability between Buk TELAR and Kub TEL was an increase in the number of fire control channels and available missiles for each system as well as a faster service entry for Buk system components. The Buk-1 was adopted into service in 1978 following completion of state trials while the complete Buk missile system was accepted into service in 1980[8] after state trials took place between 1977 and 1979.[6]
External images
Photo of TELAR 9A38, Buk vehicle, based on Kub components
Photo of TELAR 9A38, Buk vehicle, based on Kub components (sideview)
The naval variant of the 9K37 "Buk", the 3S-90 "Uragan" was developed by the Altair design bureau under the direction of chief designer G.N. Volgin.[9] The 3S-90 used the same 9M38 missile as the 9K37 though the launcher and associated guidance radars were exchanged for naval variants. The 9S-90 system was tested between 1974–1976 on the Kashin-class destroyer Provorny, and accepted into service in 1983 on the Project 956 Sovremenny-class destroyers.[9]
No sooner than the 9K37, "Buk" had started to enter service than the next phase of its development was put into operation, in 1979 the Central Committee of the CPSU authorised the development of a modernised 9K37 which would become the 9K37M1 Buk-M1, adopted into service in 1983.[6] The modernisation improved the performance of the systems radars, kill probability and resistance to electronic countermeasures (ECM). Additionally a non-cooperative threat classification system was installed, allowing targets to be classified without IFF via analysis of return radar signals.[8] The export version of Buk-M1 missile system is known as "Gang" (Russian: "Ганг"; Ganges)[citation needed].
A Buk-M1-2 SAM system 9A310M1-2 TELAR at 2005 MAKS Airshow
 
Another modification to the Buk missile system was started in 1992 with work carried out between 1994 and 1997 to produce the 9K37M1-2 Buk-M1-2,[6] which was accepted into service in 1998.[10] This modification introduced a new missile, the 9M317 which offered improved kinematic performance over the previous 9M38 which could still be used by the Buk-M1-2. Such sharing of the missile type caused a transition to a different GRAU designations – 9K317 which has been used independently for all later systems. The previous 9K37 series name was also preserved for the complex as was the "Buk" name. The new missile as well as a variety of other improvements allowed the system to intercept ballistic missiles and surface targets as well as offering improved performance and engagement envelope against more traditional targets like aircraft and helicopters.[6] The 9K37M1-2 Buk-M1-2 also received a new NATO reporting name distinguishing it from previous generations of the Buk system, this new reporting name was the SA-17 Grizzly. The export version of the 9K37M1-2 system is called "Ural" (Russian: "Урал")
Shtil-1 SA missile system (graphic)
 
The introduction of the 9K37M1-2 system for the land forces also marked the introduction of a new naval variant, the "Ezh" which carries the NATO reporting name SA-N-7B 'Grizzly' (9M317 missile) and was exported under the name "Shtil" and carries a NATO reporting name of SA-N-7C 'Gollum' (9M317E missile), according to Jane's catalogue.[7] The 9K317 incorporates the 9M317 missile to replace the 9M38 used by the previous system. A further advancement of the system was unveiled as a concept at EURONAVAL 2004, a vertical launch variant of the 9M317, the 9M317ME, which is expected to be exported under the name 3S90E "Shtil-1". Jane's also reported that in the Russian forces it would have a name of 3S90M "Smerch" (Russian: "Смерч", English translation: 'tornado').[9][11][12]
The Buk-M1-2 modernisation was based on a previous more advanced developmental system referred to as the 9K317 "Buk-M2".[6] This modernisation featured new missiles and a new third generation phased array fire control radar allowing engagement of up to four targets while tracking a further 24. A new radar system was also developed which carried a fire control radar on a 24 m extending boom, reputedly improving performance against targets flying at low altitude.[13] This new generation of Buk missile systems was stalled due to poor economic conditions after the fall of the Soviet Union. The system was presented as a static display at the 2007 MAKS Airshow. The export version of the Buk-M2 missile system Buk-M2E is also known as Ural (Russian: Урал; English: Ural)[citation needed].
In October 2007, Russian General Nikolai Frolov, commander of the Ground Forces' air defense, declared that the Russian Army would receive the brand-new Buk-M3 to replace the Buk-M1. He stipulated that the M3 would feature advanced electronic components and enter into service in 2009.[14] The upgraded Buk-M3 TELAR will have a seven rollers tracked chassis and 6 missiles in launch tubes.[15]

Description

Inside the TELAR of a Buk-M1 SAM system
 
A standard Buk battalion consists of a command vehicle, target acquisition radar (TAR) vehicle, six transporter erector launcher and radar (TELAR) vehicles and three transporter erector launcher (TEL) vehicles. A Buk missile battery consists of two TELAR and one TEL vehicle. The battery requires no more than 5 minutes to set up before it is ready for engagement and can be ready for transit again in 5 minutes. The reaction time of the battery from target tracking to missile launch is around 22 seconds.[citation needed]
Inside the TEL of a Buk-M1-2 SAM system
 
The Buk-M1-2 TELAR uses the GM-569 chassis designed and produced by JSC MMZ (Mytishchi).[16] TELAR superstructure is a turret containing the fire control radar at the front and a launcher with four ready-to-fire missiles on top. Each TELAR is operated by a crew of four and is equipped with CBRN protection. The radar fitted to each TELAR, referred to as the 'Fire Dome' by NATO, is a monopulse type radar and can begin tracking at the missile's maximum range (32 km/20 mi) and can track aircraft flying at between 15 m and 22 km (50 to 72,000 ft) altitudes. It can guide up to three missiles against a single target. The 9K37 system supposedly has much better ECCM characteristics (i.e., is more resistant to ECM and jamming) than the 3M9 Kub system that it replaces. While early Buk had a day radar tracking system 9Sh38 (similar to that used on Kub, Tor and Osa missile system), its current design can be fitted with a combined optical tracking system with a thermal camera and a laser range-finder for passive tracking of the target. The 9K37 system can also utilise the same 1S91 Straight Flush 25 kW G/H band continuous wave radar as the 3M9 "Kub" system.
The 9S35 radar of the original Buk TELAR uses mechanical scan of Cassegrain antenna reflector. Buk-M2 TELAR design used a PESA for tracking and missile guidance.
A Buk-M1-2 SAM system 9S18M1-1 Tube Arm target acquisition radar (TAR) on 2005 MAKS Airshow
 
The 9K37 utilises the 9S18 "Tube Arm" or 9S18M1 (which carries the NATO reporting name "Snow Drift") (Russian: СОЦ 9C18 "Купол"; dome) target acquisition radar in combination with the 9S35 or 9S35M1 "Fire Dome" H/I band tracking and engagement radar which is mounted on each TELAR. The Snow Drift target acquisition radar has a maximum detection range of 85 km (53 mi) and can detect an aircraft flying at 100 m (330 ft) from 35 km (22 mi) away and even lower flying targets at ranges of around 10–20 km (6–12 mi). Snow Drift is mounted on a chassis similar to that of the TELAR, as is the command vehicle. The control post which coordinates communications between the surveillance radar(s) and the launchers is able to communicate with up to six TELs at once.
Console of the upgraded TELAR of a Buk-M2E
 
The TEL reload vehicle for the Buk battery resembles the TELAR but instead of a radar, they have a crane for the loading of missiles. They are capable of launching missiles directly but require the cooperation of a Fire Dome-equipped TELAR for missile guidance. A reload vehicle can transfer its missiles to a TELAR in around 13 minutes and can reload itself from stores in around 15 minutes.
Also, Buk-M2 featured a new vehicle like TELAR, but with radar on top of a telescopic lift, and without missiles, called a target acquisition radar (TAR) 9S36. This vehicle could be used together with two TELs 9A316 to engage up to four targets, missile guidance in forested or hilly regions.
Mobile simulator SAM Buk-M2E was shown at MAKS-2013. Self-propelled fire simulator installation JMA 9A317ET SAM "Buk-M2E" on the basis of the mobile is designed for training and evaluating combat crew in the work environment to detect, capture, maintenance and defeat targets. Computer Information System fully record all actions of the crew to a "black box" to allow objectively assess the consistency of the actions and results. [17]
All vehicles of Buk-M1 (Buk-M1-2) missile system uses an Argon-15A computer as Zaslon radar does (the first airborne digital computer designed in 1972 by the Soviet Research Institute of Computer Engineering (NICEVT, currently NII Argon) and produced at "Kishinev plant of 50 Years of USSR".[18][19] The vehicles of Buk-M2 (Buk-M2E) missile system use a slightly upgraded version of Argon-A15K. This processor is also used in such military systems as anti-submarine defense Korshun and Sova, airborne radars for MiG-31 and MiG-33, mobile tactical missile systems Tochka, Oka and Volga. Currently, Argons are upgraded into Baget series of processors by NIIP.

Basic missile system specifications

  • Target acquisition range (by TAR 9S18M1, 9S18M1-1)
    Range: 140[clarification needed]
    Altitude: 60 meters – 25 kilometers (197 feet – 15.5 miles)
  • Firing groups in one division: up to 6 (with one command post)
  • Firing groups operating in a sector
    90° in azimuth, 0–7° and 7–14° in elevation
    45° in azimuth, 14–52° in elevation
  • Radar mast lifting height (for TAR 9S36): 21 meters
  • Reloading of 4 missiles by TEL from itself: around 15 minutes
  • Combat readiness time: no more than 5 minutes
  • Kill probability (by one missile): 90–95%
  • Target engagement zone
    Aircraft
    Altitude: 15 meters – 25 kilometers (50 feet – 15.5 miles)
    Range: 3–42 kilometres (2–26 miles)
    Tactical ballistic missiles
    Altitude: 2.0–16 kilometres (1.2–9.9 miles)
    Range: 3–20 kilometres (1.9–12.4 miles)
    Sea targets: up to 25 kilometres (16 miles)
    Land targets: up to 15 kilometres (9.3 miles)

Integration with higher level command posts

The basic command post of the Buk missile system is 9С510 (9K317 Buk-M2), 9S470M1-2 (9K37M1-2 Buk-M1-2) and 9S470 (Buk-M1) vehicles organizing the Buk system into a battery. It is capable of linking with various higher level command posts (HLCPs).
As an option it could be combined into the brigade with the use of HLCP, but not mixing into a unified battery.
The Buk missile system may be controlled by an upper level command post system 9S52 Polyana-D4 integrating it with S-300V/S-300VM into an air defence brigade.[20][21] Also it may be controlled by an upper level command post system 73N6ME «Baikal-1ME»[22] together with 1-4 units of PPRU-M1 (PPRU-M1-2), integrating it with SA-19 "Grison" (9K22 Tunguska) (6-24 units total) into an air defence brigade.[23] With the use of the mobile command center Ranzhir or Ranzhir-M (GRAU designations 9S737, 9S737Ðœ) the Buk missile system allows to create mixed groups of air defense forces, including Tor, Tungushka, Strela-10, and Igla.[24] "Senezh" [25] is another optional command post for a free mixing of any systems.

3S90 "Uragan"

3S90E "Shtil" (export version of M-22 Uragan) on INS Talwar (F40)
 
The 3S90 "Uragan" (Russian: Ураган; hurricane) is the naval variant of the 9K37 "Buk" and has the NATO reporting name "Gadfly" and US DoD designation SA-N-7, it also carries the designation M-22. The export version of this system is known as "Shtil" (Russian: Штиль; still). The 9Ðœ38 missiles from the 9K37 "Buk" are also used on the 3S90 "Uragan". The launch system is different with missiles being loaded vertically onto a single arm trainable launcher, this launcher is replenished from an under-deck magazine with a 24 round capacity, loading takes 12 seconds to accomplish.[9] The Uragan utilises the MR-750 Top Steer D/E band as a target acquisition radar (naval analogue of the 9S18 or 9S18M1) which has a maximum detection range of 300 km (190 mi) depending on the variant. The radar performing the role of the 9S35 the 3R90 Front Dome H/I band tracking and engagement radar with a maximum range of 30 km (19 mi).

3S90 "Ezh"

The modernised version of the 3S90 the 9K37M1-2 (or 9K317E) "Ezh" which carries the NATO reporting name "Grizzly" or SA-N-12 and the export designation "Shtil" was developed which uses the new 9M317 missile. This variant was supposed to be installed on Soviet Ulyanovsk-class nuclear aircraft carriers, and has been retrofitted to the Sovremenny-class destroyers.[citation needed].
In 1997, India signed a contract for the three Project 1135.6 frigates with "Shtil". Later, when the decision was made to modernize it with a new package of hardware & missiles, the name changed to "Shtil-1".

3S90M "Shtil-1"

In 2004, the first demonstration module of the new 9M317ME missile was presented by Dolgoprudniy Scientific and Production Plant for the upgraded 3S90M "Shtil-1" naval missile system (jointly with 'Altair'). Designed primary for the export purpose, its latest variant used a vertical launch missile which is fired from under-deck silos clustered into groups of twelve, twenty-four or thirty-six. The first Shtil-1 systems were installed into ships exported to India and China.[26][27] Old systems Uragan, Ezh and Shtil could be upgraded to Shtil-1 by replacing the launcher module inside the ship.

Missiles

9М38
9M38M1 9M317.svg
Comparison of 9M38M1, 9M317 and 9M317ME surface-to-air missiles of the Buk missile system
Type Surface-to-air missile
Place of origin Soviet Union
Production history
Variants 9М38, 9М38M1, 9M317
Specifications (9М38, 9M317)
Weight 690 kg, (1521 Lbs) 715 kg,(1576 Lbs)
Length 5.55 m (18'-3")
Diameter 0.4 m (15 3/4") (wingspan 0.86 m)(2'-10")
Warhead Frag-HE
Warhead weight 70 kg,(154.3 Lbs)
Detonation
mechanism
Radar proximity fuse

Propellant Solid propellant rocket
Operational
range
30 kilometres (19 mi)
Flight altitude 14,000 metres (46,000 ft)
Speed Mach 3
Guidance
system
Semi-active radar homing
Launch
platform
See structure

9М38 and 9М38M1 missile

The 9M38 uses a single-stage X-winged design without any detachable parts; its exterior design is similar to the American Tartar and Standard surface-to-air missile series, which led to the half-serious nickname of Standardski.[28] The design had to conform to strict naval dimension limitations, allowing the missile to be adapted for the M-22 SAM system in the Soviet Navy. Each missile is 5.55 m (18.2 ft) long, weighs 690 kg (1,520 lb) and carries a relatively large 70 kg (150 lb) warhead which is triggered by a radar proximity fuze. In the forward compartment of the missile, a semi-active homing radar head (9E50, Russian: 9Э50, 9Э50Ðœ1), autopilot equipment, power source and warhead are located. The homing method chosen was proportional navigation. Some elements of the missile were compatible with the Kub's 3M9; for example, its forward compartment diameter (33 cm), which was less than the rear compartment diameter.
9M317 surface-to-air missile on the Buk-M2 quadruple launcher.
 
The 9M38 surface-to-air missile utilizes a two-mode solid fuel rocket engine with total burn time of about 15 seconds; the combustion chamber is reinforced by metal. For the purpose of reducing the centering dispersion while in flight, the combustion chamber is located close to the center of the missile and includes a longer gas pipe. A direct-flow engine was not used because of its instability at large angle of attack and by a larger air resistance on a passive trajectory section as well as by some technical difficulties.[citation needed] Those difficulties had already wrecked plans to create the missile for Kub.[citation needed] 9M38 is capable of readiness without inspection for at least 10 years of service. The missile is delivered to the army in the 9Ya266 (9Я266) transport container.
It has been suggested that the Novator KS-172 AAM-L, an extremely long range air-to-air missile and possible anti-satellite weapon, is a derivative of the 9M38.[citation needed]

9M317 missile

The 9M317 missile was developed as a common missile for the Russian Ground Force's Soviet Air Defence Forces (PVO) (using Buk-M1-2) as well as for ship-based PVO of the Russian Navy (Ezh). Its exterior design bears a resemblance to the Vympel R-37 air-to-air missile.
The unified multi-functional 9M317 (export designation 9M317E) can be used to engage aerodynamic, ballistic, above-water and radio contrast targets from both land and sea. Examples of targets include tactical ballistic missiles, strategic cruise missiles, anti-ship missiles, tactical, strategic and army aircraft and helicopters. It was designed by OJSC Dolgoprudny Scientific Production Plant (DNPP). The maximum engagable target speed was 1200 m/s and it can tolerate an acceleration overload of 24G. It was first used with Buk-M1-2 system of the land forces and the Shtil-1 system of the naval forces.
In comparison with 9M38M1, the 9M317 has a larger defeat area, which is up to 45 km of range and 25 km of altitude and of lateral parameter, and a larger target classification. Externally the 9M317 differs from the 9M38M1 by a smaller wing chord. It uses the inertial correction control system with semi-active radar homing, utilising the proportional navigation (PN) targeting method.
The semi-active missile homing radar head (used in 9E420, Russian: 9Э420) as well as 9E50M1 for the 9M38M1 missile (9E50 for 9M38) and 1SB4 for Kub missile (Russian: 1СБ4) was designed by MNII Agate (Zhukovskiy) and manufactured by MMZ at Ioshkar-Ola.

9M317M and 9M317A missile development projects

Currently, several modernized versions are in development, including the 9M317M / 9M317ME, and active radar homing (ARH) missile 9M317A / 9M317MAE.
The lead developer, NIIP, reported the testing of the 9M317A missile within Buk-M1-2A "OKR Vskhod" (Sprout in English) in 2005.[29] Range is reported as being up to 50 km (31 mi), maximum altitude around 25 km (82,000 ft) and maximum target speed around Mach 4. The weight of the missile has increased slightly to 720 kg (1587 lb).
The missile's Vskhod development program for the Buk-M1-2A was completed in 2011. This missile could increase the survival capability and firing performance of the Buk-M1-2A using its ability to hit targets over the skyline.[30]
In 2011, Dolgoprudny NPP completed preliminary trials of the new autonomous target missile system OKR Pensne (pince-nez in English) developed from earlier missiles.[30]
9M317ME missile
The weight of the missile is 581 kg, including the 62 kg blast fragmentation warhead initiated by a dual-mode radar proximity fuze. Dimensions of the hull are 5.18 m length; 0.36 m maximum diameter. Range is 2.5–32 km in a 3S90M "Shtil-1" naval missile system. Altitude of targets from 15 m up to 15 km (and from 10 m to 10 km against other missiles). 9M317ME missiles can be fired at 2-second intervals, while its reaction (readiness) time is up to 10 s.
The missile was designed to be single-staged, semi-active radio command radar homing with inertial guidance.[26]
The tail surfaces have a span of 0.82 m when deployed after the missile leaves the launch container by a spring mechanism. Four gas-control vanes operating in the motor efflux turn the missile towards the required direction of flight. After the turnover manoeuvre, they are no longer used and subsequent flight controlled via moving tail surfaces. A dual-mode solid-propellant rocket motor provides the missile with a maximum speed of Mach 4.5.[31]


Original design tree

  • 9K37-1 'Buk-1' – First Buk missile system variant accepted into service, incorporating a 9A38 TELAR within a 2K12M3 Kub-M3 battery.
  • 9K37 'Buk'- The completed Buk missile system with all new system components, back-compatible with 2K12 Kub.
  • 9K37M1 'Buk-M1' – An improved variant of the original 9K37 which entered into service with the then Soviet armed forces.
  • 9K37M1-2 'Buk-M1-2' ('Gang' for export markets) – An improved variant of the 9K37M1 'Buk-M1' which entered into service with the Russian armed forces.
  • 9K317 'Ural' (9K37M2) – initial design of Buk-M2 which entered into service with the Russian armed forces
  • 9K317E 'Buk-M2E' - revised design for export markets[40]
Backside of the 9A317 TELAR of Buk-M2E (export version) at 2007 MAKS Airshow
9A317 TELAR of Buk-M2E (export version) at 2007 MAKS Airshow
Wheeled TELAR of Buk-M2EK SAM system at Kapustin Yar, 2011
  • 9K37M1-2A 'Buk-M1-2A' - redesign of Buk-M1-2 for the use of 9M317A missile
  • 'Buk-M2EK'[41] – A wheeled variant of Buk-M2 on MZKT-6922 chassis exported to Venezuela and Syria.
  • 9K317M 'Buk-M3' (9K37M3) – In Russian some active work is being conducted, aimed at the new perspective complex of Buk-M3. A zenith-rocket division of it will have 36 target channels in total. It will feature advanced electronic components.

Naval version design tree

  • 3S90/M-22 'Uragan' (SA-N-7 "Gadfly") – Naval version of the 9K37 Buk missile system with 9M38/9M38M1 missile.
  • 3S90 "Ezh" (SA-N-7B/SA-N-12 'Grizzly') – Naval version of the 9K37M1-2 with 9M317 missile.
  • 3S90 "Shtil" (SA-N-7C 'Gollum') – Naval export version of the 9K37M1-2 with 9M317E missile.
  • 3S90E "Shtil-1" (SA-N-12 'Grizzly') – Naval export version with 9M317ME missile.
  • 3S90M "Smerch" (SA-N-12 'Grizzly') – Possible naval version with 9M317M missile.

Copies

  •  Belarus – In May on the MILEX-2005 exposition in Minsk, Belarus presented their own modification of 9K37 Buk called Buk-MB.[42] On 26 June 2013 an exported version of Buk-MB was displayed on a military parade in Baku. It included the new 80K6M Ukrainian-build radar on an MZKT chassis (instead the old 9S18M1) and the new Russian-build missile 9M317 (as in Buk-M2).[43]
  •  People's Republic of China – HQ-16 (Hongqi-16) - People's Republic of China project based on the naval 9K37M1-2 system 'Shtil' (SA-N-12).[44] Other sources also rumored the project involved some Buk technology. It is able to engage high altitude and very low flying targets.[45] The most visual distinction between SA-17 and HQ-16 is that the latter is truck-based and vertically launched instead of track based SA-17, its total number of missiles increased to six from the original four in SA-17 system.
    •  People's Republic of China – HQ-16A – Improvement of the HQ-16, with redesigned control surfaces incorporating leading edge, thus has better performance at higher angle of attack than HQ-16.
    •  People's Republic of China – HQ-16B – Further improvement of HQ-16A[46][47]
    •  People's Republic of China – LY80 – Export version of HQ-16A,[48][49] incorporating cold vertical launch method
  •  Iran – Raad Medium Ranged Surface-to-Air Missile System using Ta'er 2 missiles. It has very similar layout to wheeled Buk-M2EK 9M317. It was shown during 2012 military parade.[50]

 

Operational service

TELAR of Finnish 9K37M1 Buk-M1 (SA-11 Gadfly) from the left side (missiles locked in a transport position)
 
In 1996 Finland started operating the eighteen missile systems that they received from Russia as debt payment.[76] According to Suomen Kuvalehti, Finland is planning to accelerate the replacement of the missile system due to concerns about its susceptibility to electronic warfare.[77][78]

Combat service

Abkhaz authorities claimed that Buk air defense system was used to shoot down four Georgian drones at the beginning of May 2008.[79]
Analysts concluded that Georgian Buk missile systems were responsible for downing four Russian aircraft—three Sukhoi Su-25 close air support aircraft and a Tupolev Tu-22M strategic bomber—in the 2008 South Ossetia war.[80] U.S. officials have said Georgia's SA-11 Buk-1M was certainly the cause of the Tu-22M's loss and contributed to the losses of the three Su-25s.[81] According to some analysts, the loss of four aircraft is surprising and a heavy toll for Russia given the small size of Georgia's military.[82][83] Some have also pointed out, that Russian electronic counter-measures systems were apparently unable to jam and suppress enemy SAMs in the conflict[84] and that Russia was, surprisingly, unable to come up with effective countermeasures against missile systems it had designed.[80]
Georgia bought these missile systems from Ukraine which had an inquiry to identify if the purchase was illegal.[85]
On 29 January 2013, the Israeli Air Force launched an airstrike on a convoy in Syria believed to have SA-17 BUK-M2E missiles bound for Hezbollah in Lebanon. The Syrian government denied that the shipment of weapons was taking place.[86]
The system is suspected of having been involved in the downing of Malaysia Airlines Flight 17 (a Boeing 777-200ER) on 17 July 2014 with 298 fatalities in eastern Ukraine's Donetsk Oblast.[87] Videos posted by Russian-backed separatist forces after the crash claimed to have used the system to bring down what they claimed was an An-26 in the area of the crash, and allegedly showed images of the burning wreckage of MH17 in the distance as evidence.[