http://nextbigfuture.com/
May 28, 2015
The direct light propulsion of matter was observed on a macroscopic scale for the first time using a bulk graphene [graphene sponge] based material. The unique structure and properties of graphene and the morphology of the bulk graphene material make it capable of not only absorbing light at various wavelengths but also emitting energetic electrons efficiently enough to drive the bulk material following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk scale light manipulation with the potential to realize long-sought proposals in areas such as the solar sail and space transportation driven directly by sunlight.
Two working mechanisms have been well documented for beam-powered propulsion: either an external laser beam ablates/burns off propellant to provide propulsion similar to conventional chemical rockets or the direct radiation pressure generates the propulsion force governed by the Maxwell electromagnetism theory as has been proposed for the solar sail. The light intensities (irradiance) of Watt level laser and simulated sunlight in our tests were at 10^5 and 10^4 W m-2 level respectively. Based on the radiation pressure theory, the propulsion forces produced by the radiation pressure of such laser and simulated sunlight should be both at ~10^-9 N and they are orders of magnitude smaller than the force required to move and propel the bulk graphene object
So the direct radiation pressure induced mechanism can be excluded. Another possibility for explaining our laser-induced propulsion and rotation is the conventional laser beam ablating or burning off of graphene material to generate a plasma plume or carbon particles and molecules for propulsion. But such a mechanism normally needs extremely high laser power supply, so pulsed laser sources (ms/ns level pulse width and gigawatt level peak power) or ultrahigh power continuous wave laser (up to megawatt level) were used. This is contrary to our light-induced motion which can even be observed with sun light which has a much lower power. Note that the continuous wave lasers that we used were only at the Watt level.
No ablation could be detected.
These results prompt them to search for other possible mechanisms for macroscopic direct light manipulation. It is well known that graphene sheet shows unique optoelectronic properties due to its Dirac conical and gapless band structure, which allows graphene to: 1) absorb all wavelength of light efficiently, 2) achieve population inversion state easily as a result of the excitation of hot electrons and the relaxation bottleneck at the Dirac point and then 3) eject the hot electrons following the Auger-like mechanism. Many studies of this effect have been reported not only for individual suspended graphene sheets but also for reduced graphene oxide sheets. In the competition of different relaxation pathways of carriers at the reverse saturated state of the optically excited graphene, due to the weak electron-phonon coupling, the Auger-like recombination is proved to be the dominant process and plays an unusually strong role in the relaxation dynamics process of the hot carriers (electrons).
Graphene sponge
They believe Auger-like recombination is probably also the dominant path for the relaxation of the hot electrons for their photoexcited graphene
The average current was measured at about 3.0 × 10^-8 to 9.0 × 10^-7 A under the laser power 1.3-3.0 W (450 nm, power density 3.71× 10^4 -8.57 × 10^4 mW cm-2 for 3.5 mm2 laser spot, which means that the electron ejection rate should be about 2.0 × 10^11 to 5.7 × 10^12 s-1, so a power of 2.2 × 10^-6 to 6.4 × 10^-5
J s-1 (Watt) could be obtained based the average kinetic energy of 70 eV for the ejected electrons. This is larger than the energy necessary (more than 10^-6 Watt) to vertically propel the sample.
Note the actual propulsion force/energy should be significantly larger than the values estimated above, since clearly not all the electrons were collected in the measurement. Thus, this propulsion by Light-Induced Ejected Electrons (LIEE) is actually an energy transfer process, where the photon energy is absorbed by graphene bulk materials and converted into the kinetic energy of ejected electrons, rather than a direct momentum transfer process like in the earlier proposed propulsion by light pressure.
While the propulsion energy/force is still smaller compared with conventional chemical rockets, it is already several orders larger than that from light pressure. Assuming the area of a typical solar-cell panel structure on the satellite is ~50 m2 and because a laser-graphene sponge-based rocket does not need other moving parts, with a payload of 500 kg, the acceleration rate would be 0.09 meter per sec squared . Since the density of graphene sponge is very low and no other onboard propellant is needed (the required vacuum and light are naturally available in space), the theoretical specific impulse of our laser propulsion could be much higher
Spacecraft built from graphene could fly without any fuel
Add this to the list of graphene's amazing
properties: It can transform light into motion.
Mon, Jun 01, 2015 at 03:47 AM
Graphene is a wonder material made of carbon atoms arranged in a honeycomb lattice.
(Photo: Wiki Commons)
Even though it is only one atom thick,
graphene is 200 times stronger than steel. It conducts heat and
electricity with great efficiency, is nearly transparent, and might just
be the most useful material ever discovered. The amazing properties of
graphene, as well as the many inventions
that have spawned from its discovery, are becoming too numerous to
count. Now scientists have stumbled upon yet another incredible hallmark
of this wonder material: It turns light into motion, reports New Scientist.
This latest graphene breakthrough came entirely by accident.
Researchers discovered it while using a laser to cut a sponge made
of crumpled sheets of graphene oxide. As the laser cut into the
material, it mysteriously propelled forward. Although lasers have been
shown to shove single molecules around, they shouldn't be physically
capable of moving a structure as large as the graphene sponge.
Baffled, researchers investigated further. The graphene material
was put in a vacuum and again shot with a laser. Incredibly, the laser
still pushed the sponge forward, and by as much as 40 centimeters.
Researchers even got the graphene to move by focusing ordinary sunlight
on it with a lens.
How is this possible? Researchers still aren't sure, but there are
two leading theories. One explanation is that the material is acting
like a solar sail. Basically, photons can transfer momentum to an object
and propel it forward, and in the vacuum of space this effect can
accumulate and even generate enough thrust to move a spacecraft.
When researchers tested the solar sail theory, however, it worked too well.
This led them to consider a second possibility, that the graphene is
absorbing the laser's energy, building up a charge of electrons.
Eventually extra electrons are released, which act like a propellant,
pushing the graphene material in the opposite direction.
Though this second theory is a bit vague and incomplete, scientists
were able to detect a current flowing away from the graphene as it was
exposed to a laser, suggesting that the theory is at least on the right
track.
So what does this all mean? It means that researchers may have just
accidentally discovered a propulsion system for a spacecraft that
requires no fuel whatsoever. Essentially, a spacecraft built from graphene could explore the heavens powered by nothing more than sunlight.
"While the propulsion force is still smaller than conventional
chemical rockets, it is already several orders larger than that from
light pressure," wrote researcher Yongsheng Chen and colleagues of the
discovery.
More study is required before researchers can say for sure if the
material can offer a viable alternative to fuel propulsion, but the
results so far are exciting. Truly, there seems to be no end to the amazing qualities of graphene.
No comments:
Post a Comment