Search This Blog

Wikipedia

Search results

Tuesday, December 1, 2015

New Charge Density wave found in superconductors

November 06, 2015



A team led by scientists at the Department of Energy’s SLAC National Accelerator Laboratory combined powerful magnetic pulses with some of the brightest X-rays on the planet to discover a surprising 3-D arrangement of a material’s electrons that appears closely linked to a mysterious phenomenon known as high-temperature superconductivity.

This unexpected twist marks an important milestone in the 30-year journey to better understand how materials known as high-temperature superconductors conduct electricity with no resistance at temperatures hundreds of degrees Fahrenheit above those of conventional metal superconductors but still hundreds of degrees below freezing.

The 3-D effect that scientists observed in the LCLS experiment, which occurs in a superconducting material known as YBCO (yttrium barium copper oxide), is a newly discovered type of “charge density wave.” This wave does not have the oscillating motion of a light wave or a sound wave; it describes a static, ordered arrangement of clumps of electrons in a superconducting material. Its coexistence with superconductivity is perplexing to researchers because it seems to conflict with the freely moving electron pairs that define superconductivity.


‘Totally Unexpected’ Physics

“This was totally unexpected, and also very exciting. This experiment has identified a new ingredient to consider in this field of study. Nobody had seen this 3-D picture before,” said Jun-Sik Lee, a SLAC staff scientist and one of the leaders of the experiment conducted at SLAC’s Linac Coherent Light Source (LCLS) X-ray laser. “This is an important step in understanding the physics of high-temperature superconductors.”

The dream is to push the operating temperature for superconductors to room temperature, he added, which could lead to advances in computing, electronics and power grid technologies.

There are already many uses for standard superconducting technology, from MRI machines that diagnose brain tumors to a prototype levitating train, the CERN particle collider that enabled the Nobel Prize-winning discovery of the Higgs boson and ultrasensitive detectors used to hunt for dark matter, the invisible constituent believed to make up most of the mass of the universe. A planned upgrade to the LCLS, known as LCLS-II, will include a superconducting particle accelerator.

Science - Three-dimensional charge density wave order in YBa2Cu3O6.67 at high magnetic fields

Powerful Blend of Magnetism and Light

Those short but intense magnetic pulses suppressed the superconductivity of the YBCO samples and provided a clearer view of the charge density wave effects. They were immediately followed at precisely timed intervals by ultrabright LCLS X-ray laser pulses, which allowed scientists to measure the wave effects.

“This experiment is a completely new way of using LCLS that opens up the door for a whole new class of future experiments,” said Mike Dunne, LCLS director.

Researchers conducted many preparatory experiments at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL) and Argonne National Laboratory's Advanced Photon Source (APS), which also produce X-rays for research. LCLS, SSRL and APS are DOE Office of Science User Facilities. Scientists from SIMES, the Stanford Institute for Materials and Energy Sciences at SLAC, and SSRL and LCLS were a part of the study.

“I’ve been excited about this experiment for a long time,” said Steven Kivelson, a Stanford University physics professor who contributed to the study and has researched high-temperature superconductors since 1987.

Kivelson said the experiment sets very clear boundaries on the temperature and strength of the magnetic field at which the newly observed 3-D effect emerges. “There is nothing vague about this,” he said. “You can now make a definitive statement: In this material a new phase exists.”

The experiment also adds weight to the growing evidence that charge density waves and superconductivity “can be thought of as two sides of the same coin,” he added.

In Search of Common Links

But it is also clear that YBCO is incredibly complex, and a more complete map of all of its properties is required to reach any conclusions about what matters most to its superconductivity, said Simon Gerber of SIMES and Hoyoung Jang of SSRL, the lead authors of the study.

Follow-up experiments are needed to provide a detailed visualization of the 3-D effect, and to learn whether the effect is universal across all types of high-temperature superconductors, said SLAC staff scientist and SIMES investigator Wei-Sheng Lee, who co-led the study with Jun-Sik Lee of SSRL and Diling Zhu of LCLS. “The properties of this material are much richer than we thought,” Lee said.

“We continue to make new and surprising observations as we develop new experimental tools,” Zhu added.

Abstract

Charge density wave (CDW) correlations have been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured by x-ray scattering at zero and low fields. Here we combine a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa2Cu3O6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below T ~ 150 K, is essentially two-dimensional, at lower temperature and beyond 15 Tesla, another three-dimensionally ordered CDW emerges. The field-induced CDW appears around the zero-field superconducting transition temperature; in contrast, the incommensurate in-plane ordering vector is field-independent. This implies that the two forms of CDW and high-temperature superconductivity are intimately linked.

November 06, 2015


Superconducting at -70 degrees celsius seems to be accepted by mainstream scientists and has triggered race for room temperature superconductor


The world of superconductivity is in uproar. Last year, Mikhail Eremets and a couple of pals from the Max Planck Institute for Chemistry in Mainz, Germany, made the extraordinary claim that they had seen hydrogen sulphide superconducting at -70 °C. That’s some 20 degrees hotter than any other material—a huge increase over the current record.

Eremets and co have worked hard to conjure up the final pieces of conclusive evidence. A few weeks ago, their paper was finally published in the peer reviewed journal Nature, giving it the rubber stamp of respectability that mainstream physics requires. Suddenly, superconductivity is back in the headlines.

Today, Antonio Bianconi and Thomas Jarlborg at the Rome International Center for Materials Science Superstripes in Italy provide a review of this exciting field. These guys give an overview of Eremet and co’s discovery and a treatment of the theoretical work that attempts to explain it.





Arxiv - Superconductivity above the lowest Earth temperature in pressurized sulfur hydride

A recent experiment has shown a macroscopic quantum coherent condensate at 203 K, about 19 degrees above the coldest temperature recorded on the Earth, 184 K, in pressurized sulfur hydride. This discovery is relevant not only in material science and condensed matter but also in other fields ranging from quantum computing to quantum physics of living matter. It has given the start to a gold rush looking for other macroscopic quantum coherent condensates in hydrides at the temperature range of living matter with critical superconducting temperatures over 200K and less than 400K. We present here a review of the experimental results and the theoretical works and we discuss the Fermiology of H3S focusing on Lifshitz transitions as a function of pressure. We discuss the possible role of the shape resonance near a neck disrupting Lifshitz transition, in the Bianconi-Perali Valletta (BPV) theory, for rising the critical temperature in a multigap superconductor, as the Feshbach resonance rises the critical temperature in Fermionic ultracold gases.
There are essentially three characteristics that physicists look for as proof that a material superconducts. The first is a sudden drop in electrical resistance when the material is cooled below this critical temperature. The second is the expulsion of magnetic fields from inside the material, a phenomenon known as the Meissner effect.

The third is a change in the critical temperature when atoms in the material are replaced with isotopes. That’s because the difference in isotope mass causes the lattice to vibrate differently, which changes the critical temperature.

But there is another kind of superconductivity that is much less well understood. This involves certain ceramic substances discovered in the 1980s that superconduct up to temperatures of about -110 centigrade. Nobody really understands how this works but much of the research in the superconductivity community has focused on these exotic materials.

Eremet and co’s work is likely to change that. Perhaps the biggest surprise about their breakthrough is that it does not involve a “high temperature” superconductor. Instead, hydrogen sulphide is an ordinary superconductor of the kind that had never been seen working at temperatures greater than about 40 kelvin.

Eremet and co achieved their trick by squeezing the material to the kind of pressures that exist only at the center of the earth. At the same time, they have managed to find evidence of all the important characteristics of superconductivity.

in the 1960s, the British physicist Neil Ashcroft predicted that hydrogen ought to be able to superconduct at high temperatures and pressures, perhaps even at room temperature. His idea was that hydrogen is so light that it should form a lattice capable of vibrating at very high frequencies and therefore of superconducting at high temperatures and pressures.

Eremet and co’s discovery seems to be a vindication of this idea. Or at least, something like it. There are numerous theoretical creases that need to be ironed out before physicists can say they have a proper understanding of what’s going on. This theoretical work is ongoing.

Now the race is on to find other superconductors that work at even higher temperatures. One promising candidate is H3S (as opposed to H2S that Eremet initially worked on).

And of course, physicists are beginning to think about applications. There are numerous challenges in exploiting this material, not least because it exists in superconducting form only in tiny samples inside high pressure anvils.

But that hasn’t stopped people speculating. “This discovery is relevant not only in material science and condensed matter but also in other fields ranging from quantum computing to quantum physics of living matter,” say Bianconi and Jarlborg. They also make the thought-provoking point that this superconductor works at a temperature that is 19 degrees higher than the coldest temperature ever recorded on Earth.

That makes this an exciting field to be in and one we’re likely to hear a lot more about in the coming months and years.

SOURCES - Technology Review, Arxiv

October 26, 2015


New state of matter discovered which could hold the key to high temperature superconductivity


A team of physicists led by Caltech's David Hsieh has discovered an unusual form of matter—not a conventional metal, insulator, or magnet, for example, but something entirely different. This phase, characterized by an unusual ordering of electrons, offers possibilities for new electronic device functionalities and could hold the solution to a long-standing mystery in condensed matter physics having to do with high-temperature superconductivity—the ability for some materials to conduct electricity without resistance, even at "high" temperatures approaching –100 degrees Celsius.

"The discovery of this phase was completely unexpected and not based on any prior theoretical prediction," says Hsieh, an assistant professor of physics, who previously was on a team that discovered another form of matter called a topological insulator. "The whole field of electronic materials is driven by the discovery of new phases, which provide the playgrounds in which to search for new macroscopic physical properties."


Artist's rendition of spatially segregated domains of multipolar order in the Sr2IrO4 crystal. The orientation of the multipolar order in each domain is depicted by the multi-lobed object. Credit: Liuyan Zhao

Nature Physics - Evidence of an odd-parity hidden order in a spin–orbit coupled correlated iridate

The physicists made the discovery while testing a laser-based measurement technique that they recently developed to look for what is called multipolar order. To understand multipolar order, first consider a crystal with electrons moving around throughout its interior. Under certain conditions, it can be energetically favorable for these electrical charges to pile up in a regular, repeating fashion inside the crystal, forming what is called a charge-ordered phase. The building block of this type of order, namely charge, is simply a scalar quantity—that is, it can be described by just a numerical value, or magnitude.

In addition to charge, electrons also have a degree of freedom known as spin. When spins line up parallel to each other (in a crystal, for example), they form a ferromagnet—the type of magnet you might use on your refrigerator and that is used in the strip on your credit card. Because spin has both a magnitude and a direction, a spin-ordered phase is described by a vector.

Over the last several decades, physicists have developed sophisticated techniques to look for both of these types of phases. But what if the electrons in a material are not ordered in one of those ways? In other words, what if the order were described not by a scalar or vector but by something with more dimensionality, like a matrix? This could happen, for example, if the building block of the ordered phase was a pair of oppositely pointing spins—one pointing north and one pointing south—described by what is known as a magnetic quadrupole. Such examples of multipolar-ordered phases of matter are difficult to detect using traditional experimental probes.

As it turns out, the new phase that the Hsieh group identified is precisely this type of multipolar order.

To detect multipolar order, Hsieh's group utilized an effect called optical harmonic generation, which is exhibited by all solids but is usually extremely weak. Typically, when you look at an object illuminated by a single frequency of light, all of the light that you see reflected from the object is at that frequency. When you shine a red laser pointer at a wall, for example, your eye detects red light. However, for all materials, there is a tiny amount of light bouncing off at integer multiples of the incoming frequency. So with the red laser pointer, there will also be some blue light bouncing off of the wall. You just do not see it because it is such a small percentage of the total light. These multiples are called optical harmonics.

The Hsieh group's experiment exploited the fact that changes in the symmetry of a crystal will affect the strength of each harmonic differently. Since the emergence of multipolar ordering changes the symmetry of the crystal in a very specific way—a way that can be largely invisible to conventional probes—their idea was that the optical harmonic response of a crystal could serve as a fingerprint of multipolar order.

"We found that light reflected at the second harmonic frequency revealed a set of symmetries completely different from those of the known crystal structure, whereas this effect was completely absent for light reflected at the fundamental frequency," says Hsieh. "This is a very clear fingerprint of a specific type of multipolar order."

The specific compound that the researchers studied was strontium-iridium oxide (Sr2IrO4), a member of the class of synthetic compounds broadly known as iridates. Over the past few years, there has been a lot of interest in Sr2IrO4 owing to certain features it shares with copper-oxide-based compounds, or cuprates. Cuprates are the only family of materials known to exhibit superconductivity at high temperatures—exceeding 100 Kelvin (–173 degrees Celsius). Structurally, iridates and cuprates are very similar. And like the cuprates, iridates are electrically insulating antiferromagnets that become increasingly metallic as electrons are added to or removed from them through a process called chemical doping. A high enough level of doping will transform cuprates into high-temperature superconductors, and as cuprates evolve from being insulators to superconductors, they first transition through a mysterious phase known as the pseudogap, where an additional amount of energy is required to strip electrons out of the material. For decades, scientists have debated the origin of the pseudogap and its relationship to superconductivity—whether it is a necessary precursor to superconductivity or a competing phase with a distinct set of symmetry properties. If that relationship were better understood, scientists believe, it might be possible to develop materials that superconduct at temperatures approaching room temperature.

Recently, a pseudogap phase also has been observed in Sr2IrO4—and Hsieh's group has found that the multipolar order they have identified exists over a doping and temperature window where the pseudogap is present. The researchers are still investigating whether the two overlap exactly, but Hsieh says the work suggests a connection between multipolar order and pseudogap phenomena.

"There is also very recent work by other groups showing signatures of superconductivity in Sr2IrO4 of the same variety as that found in cuprates," he says. "Given the highly similar phenomenology of the iridates and cuprates, perhaps iridates will help us resolve some of the longstanding debates about the relationship between the pseudogap and high-temperature superconductivity."

Hsieh says the finding emphasizes the importance of developing new tools to try to uncover new phenomena. "This was really enabled by a simultaneous technique advancement," he says.

Furthermore, he adds, these multipolar orders might exist in many more materials. "Sr2IrO4 is the first thing we looked at, so these orders could very well be lurking in other materials as well, and that's exactly what we are pursuing next."

SOURCE - california institute of technology, Paper- Evidence of an odd-parity hidden order in a spin–orbit coupled correlated iridate

Electronic nematicity as a universal feature in cuprate high-temperature superconductors


Physicists at the University of Waterloo have led an international team that has come closer to understanding the mystery of how superconductivity, an exotic state that allows electricity to be conducted with practically zero resistance, occurs in certain materials.

The findings show evidence of electronic nematicity as a universal feature in cuprate high-temperature superconductors. Cuprates are copper-oxide ceramics composed of two-dimensional layers or planes of copper and oxygen atoms separated by other atoms.

Physicists all over the world are on a quest to understand the secrets of superconductivity because of the exciting technological possibilities that could be realized if they could make it happen at closer to room temperatures. In conventional superconductivity, materials that are cooled to nearly absolute zero ( −273.15 Celsius) exhibit the fantastic property of electrons pairing up and being able to conduct electricity with practically zero resistance. If superconductivity worked at higher temperatures, it could have implications for creating technologies such as ultra-efficient power grids, supercomputers and magnetically levitating vehicles.


Science - Nematicity in stripe-ordered cuprates probed via resonant x-ray scattering

Scientists use soft x-ray scattering in superconductivity research

The scientists used a novel technique called soft x-ray scattering at the Canadian Light Source synchrotron in Saskatoon to probe electron scattering in specific layers in the cuprate crystalline structure. Specifically, they looked at the individual cuprate (CuO2) planes where electronic nematicity takes place, versus the crystalline distortions in between the CuO2 planes.

Electronic nematicity happens when the electron orbitals align themselves like a series of rods. The term nematicity commonly refers to when liquid crystals spontaneously align under an electric field in liquid crystal displays. In this case, the electron orbitals enter the nematic state as the temperature drops below a critical point.

Future work will tackle how electrons can be tuned for superconductivity

Although there is not yet an agreed upon explanation for why electronic nematicity occurs, it may ultimately present another knob to tune in the quest to achieve the ultimate goal of a room temperature superconductor.

“Future work will tackle how electronic nematicity can be tuned, possibly to advantage, by modifying the crystalline structure,” says Hawthorn.


Disentangling intertwined orders

In copper oxide superconductors, several types of order compete for supremacy. In addition to superconductivity, researchers have found periodic patterns in charge density (CDW order), as well as an asymmetry in the electronic density within the unit cell of some cuprates (nematicity). CDW order has been detected in the underdoped regime of all major cuprate families, but the ubiquity of nematicity is less clear. Achkar et al. used resonant x-ray scattering to find that, in the copper oxide planes of three lanthanum-based cuprates, nematicity has a temperature dependence distinct from that of a related structural distortion. This implies that there are additional, electronic mechanisms for nematicity

Abstract

In underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry-breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here, we employ resonant x-ray scattering in stripe-ordered superconductors (La,M)2CuO4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M)2O2 layers, and CDW order. We find distinct temperature dependences for the structure of the (La,M)2O2 layers and the electronic nematicity of the CuO2 planes, with only the latter being enhanced by the onset of CDW order. These results identify electronic nematicity as an order parameter that is distinct from a purely structural order parameter in underdoped striped cuprates.

SOURCES - University of Waterloo, Journal Science


No comments:

Post a Comment