From Wikipedia, the free encyclopedia
The Aegis Ballistic Missile Defense System (Aegis BMD or ABMD)[1] is a United States Department of Defense Missile Defense Agency program developed to provide defense against ballistic missiles. It is part of the United States national missile defense strategy. Aegis BMD (also known as Sea-Based Midcourse) is designed to intercept ballistic missiles post-boost phase and prior to reentry.It enables warships to shoot down enemy ballistic missiles, by expanding the Aegis Combat System with the addition of the AN/SPY-1 radar and Standard missile technologies. Aegis BMD-equipped vessels can transmit their target detection information to the Ground-Based Midcourse Defense system and, if needed, engage potential threats using either the SM-2 or SM-3 missile.[2][3]
The current system uses the Lockheed Martin Aegis Weapon System and the Raytheon RIM-161 Standard Missile 3 (SM-3). Notable subcontractors and technical experts include Boeing, Alliant Techsystems (ATK), Honeywell, Naval Surface Warfare Center, SPAWAR Systems Center, Johns Hopkins University Applied Physics Laboratory (JHU/APL), and the Massachusetts Institute of Technology Lincoln Laboratory (Lincoln Lab).
Contents
History and technical development
Origins
The current effort to deploy Aegis ballistic missile defense (ABMD) was begun during the mid-1980s as part of President Ronald Reagan's Strategic Defense Initiative (SDI). The SDI plan was initially for a space-based railgun system. However, due to technological constraints, the system was transformed into a surface-based system known as the Lightweight Exo-atmospheric Projectile (LEAP). The original testing of the LEAP was done as part of the Army LEAP program.Later, SDIO worked with the Navy to test the LEAP on the Terrier missile. The Terrier LEAP demonstration program lasted from 1991 into 1995 and consisted of four flight tests. Two of these were intercept tests in early 1995; both failed to intercept—the first had a software error in the second stage booster, the second had a squib (pyrotechnic switch to connect power) in the kinetic kill vehicle that was mounted backwards and failed to fire.
Program history and development
During the late 1990s, the U.S. Navy was tasked to provide a weapon system for exploratory testing of LEAP. This phase was designated the Aegis LEAP Intercept (ALI) program. The program was for two successful intercepts in five attempts. On June 13, 2002, the second successful ALI intercept occurred during the FM-3 flight test mission. Initial Aegis BMD success may have contributed to President George W. Bush's decision to deploy an emergency ballistic missile capability by late 2004.Upon the completion of the ALI program, Aegis BMD was transitioned to the production phase. The first Block I production SM-3 was delivered in October 2004, and the Aegis 3.0 update was delivered in 2005.
This system was given major new importance by President Obama in September 2009, when he announced plans to scrap the plans for a missile defense site in Poland, in favor of missile defense systems located on U.S. Navy warships.[4][5] On 18 September 2009, Russian Prime Minister Vladimir Putin welcomed Obama's plans for missile defense which may include stationing American Aegis armed warships in the Black Sea, as these would be less effective against Russia's missile attacks.[6][7] In 2009, several U.S. Navy ships were fitted with SM-3 missiles to serve this function, which complements the Patriot systems already deployed by American units. Also, warships of Japan and Australia have been given weapons and technology to enable them to participate as well.[8][9]
Current Aegis BMD hardware includes the SM-3 Block-1a missile and other improvements to the Aegis Weapons System. Future development of the Aegis BMD system includes Launch on Remote capability, upgraded SM-3 avionics and hardware, and an upgraded Aegis Weapon System. In 2012 Aegis Ballistic Missile Defense will merge with Aegis Open Architecture and deliver the benefits of both platforms.[10] The Launch on Remote capability involves the use of off-board sensors, such as the Space Tracking and Surveillance System to provide a targeting solution for a SM-3 launch.[11]
Aegis Ashore
A land-based component, Aegis Ashore, is also planned (pictured). This would consist of equipment which is commonly used by the Navy being deployed in land-based facilities. This would include SPY-1 radars and a battery of Standard Missile-3s. The Obama administration’s plans call for two sites: the first in Romania at Deveselu in 2015 and the second in Poland in 2018. In 2020, both will get the latest versions of the Aegis BMD software and the latest version of the SM-3.[12] Some radar facilities will be placed in Turkey at a future date.[13][14][15][16]Deployment
As of January, 2014, the U.S. and Japan are the only countries to have deployed the Aegis BMD.[17]A total of five US Navy Ticonderoga class cruisers and 16 Arleigh Burke class destroyers have BMD capability as of November 2010.[2][18] In 2010, all remaining Ticonderoga class cruisers that have SPY 1B systems (CG-59–CG-73) will be refitted with TBMD engagement technology. Ticonderoga class cruisers equipped with anti-ballistic missile capability include the USS Lake Erie, USS Shiloh and USS Port Royal. Arleigh Burke class destroyers so equipped include the USS Wilbur, USS Stout, USS John S. McCain, USS Russell, USS Paul Hamilton, USS Ramage, USS Fitzgerald, USS Stethem, USS Benfold, USS Milius, USS Decatur, USS O'Kane. An additional three ships have been refitted for Long Range Surveillance and Tracking (LRST): USS John Paul Jones, USS Hopper, and USS Higgins, with plans to add engagement capabilities by 2010.
On November 12, 2009, the Missile Defense Agency announced that six additional U.S. Navy destroyers would be upgraded to participate in the program. In fiscal 2012, USS Carney, USS Ross, and USS Donald Cook will be upgraded. USS Cole, USS McFaul and USS Porter will be upgraded in fiscal year 2013. The goal of the program is to have 21 ships upgraded by the end of 2010; 24 in 2012; 27 around 2013 and 38 at the end of FY 2015.[19][20] In January 2010, the Obama administration began to increase the deployed presence of Aegis BMD-equipped warships in the Persian Gulf. Some media reports attributed this to heightened concerns about conduct of Iran and its possible nuclear weapons effort.[21]
Japanese deployment
The JMSDF has equipped three vessels for LRST and engagement: JS Kongo, JS Chokai, JS Myoko, and in 2010 the JS Kirishima.[22][23] Japan's foreign minister Hirofumi Nakasone and South Korea's Minister of Foreign Affairs Yu Myung-hwan agreed that early April 5, 2009 launch[24] of the North Korean Unha-2 satellite violated UN resolutions 1695 and 1718 of July 2006. Japan's cabinet examined approval of a JMSDF AEGIS BMD engagement in the event of a failure of the Taepondong launch.[25][26][27][28] The Japanese government also noted that it could bypass cabinet for an interception under Article 82, Section 2, Paragraph 3 of the Self-Defence Forces law.[29] In total, 5 AEGIS destroyers were deployed at that time.[30] The intercept-capability was a 2-tiered[31] use of SM-3's in the boost phase and Patriot AC-3's in the event of re-entry in Japanese airspace during a potential failure.[32] Supplemental to SM-3 capability the Japanese system incorporates an airborne component. Together discrimination between platform tests and satellite launches is possible by analyzing the angle of ascent.[33]Political debate
Tom Laliberty of Raytheon said that President Barack Obama was forced to shift from a land based missile defense system to a sea based one because of the difficulties of coordinating with partner nations.[34] There is discussion about the effectiveness of this plan. Some critics say it might not be as effective as a ground-based defense.[who?] Also, the U.S. Defense Department has said it would be just one component of a wider defense which might also include ground-based facilities.[35] There are some reports that SPY-1 radar systems onboard some individual warships are not being maintained properly. A Navy panel headed by retired Vice Adm. Phillip Balisle has asserted that since the late 1990s there has been an over-emphasis on saving money, including cuts in crews and streamlined training and maintenance, which has led to a drastic decline in readiness, and has left Aegis combat systems in low state of readiness.[36] And in spite of a reduction in the objective for the number of Aegis armed warships to field, the U.S. Navy will still fall short of this reduced objective under the fiscal year for 2012 shipbuilding plan for the next 30 years.[37]International reaction
Russia believes that the system is "fueling a new arms race", and is constructed "on ridiculous fabricated pretexts" of protection against non-existent threats of the so-called rogue states. Dmitry Rogozin, the Deputy Prime Minister of the Russian government, said that the country would "react in the sharpest manner" to any American ships armed with the system found near their shores.[38]Other capabilities
Main article: USA 193#Destruction
The Aegis BMD system, coupled with the RIM-161 Standard missile (SM-3), has also demonstrated a limited capability as an anti-satellite weapon against satellites in the lower portion of low Earth orbit. On February 20, 2008, USA 193 was destroyed by a group of Aegis ships in the Pacific, out of concern of that satellite's hydrazine payload contaminating land area upon re-entry from an uncontrolled orbit. The launching vessel was the USS Lake Erie, and one SM-3 missile was used. Interception was at an altitude of 133 nautical miles (247 kilometers).According to Roger Cliff, a senior political scientist at the RAND Corporation, while the SM-3 would have limited effectiveness against ASBMs, the U.S. arsenal has a "variety of potential countermeasures" and the "kill chain" of a potential DF-21D attack would be so "complicated" that it would provide a "number of opportunities to defeat the attack". He also stated that unless one country integrates an "entire system of systems" to make this work, the missile itself would be pretty "useless".[39]
“Some countries might buy them just to impress their neighbors, but their combat effectiveness would be negligible unless the country also invested in the needed detection, data processing, and communications systems".[39] - Roger Cliff
Flight tests to date
CTV-1
The first flight test for the Navy Theater Wide program's Control Test Vehicle-1 (CTV-1) was on September 26, 1997, using a SM-2 Block IV missile modified for exo-atmospheric flight and launched from the USS Russell (DDG 59). The missile self-destructed soon after launch after veering off course. The root cause of this problem was due to a defect in the Navy's existing SM-2 Block IV ordnance, not due to any guidance modifications for high altitude flight. The Navy and BMDO thus characterized the flight as a "No-Test."CTV-1a
The next flight for Raytheon's SM-3 came on September 24, 1999, during Control Test Vehicle (CTV)-1A (Codename: Stellar Phoenix). CTV-1a was a test of the first and second stage of the SM-3. The mission was considered a success. The USS Shiloh was the launching ship.FTR-1
The next mission was conducted in July 2000 and designated Flight Test Round (FTR-1) (Codename: Stellar Archer). This mission ended in failure when the Third Stage Rocket Motor (TSRM) failed to separate from the second stage. The USS Shiloh was the launching ship.FTR-1a
FTR-1a (Codename: Stellar Gemini) was conducted on January 25, 2001. This mission would be the first time a live unitary target was engaged by the Aegis BMD system. The test target was launched from the U.S. Navy's Pacific Missile Range Facility located on the Hawaiian island of Kauai.FTR-1a would demonstrate exo-atmospheric avionics operation of the SM-3 Kinetic Warhead (KW) and the real-time performance of the Aegis BMD AN/SPY-1 radar. At the time this test was conducted, the KW's propulsion system, the Solid Divert and Attitude Control System (SDACS), was still being developed. Total system operation was demonstrated in FM-2. The mission was considered successful when the KW acquired and tracked the test target for several seconds. The USS Lake Erie was the launching ship.
FM-2
The purpose of Flight Mission (FM)-2 (Codename: Stellar Eagle) was to characterize the Aegis Weapon System and Standard Missile-3 interceptor. The mission was not required to intercept the target. On January 25, 2002, an SM-3 launched from the USS Lake Erie collided with a test target northeast of the island of Kauai. This mission was the first interception of a ballistic missile from a sea-based platform.FM-3
On June 13, 2002 Aegis BMD succeeded in intercepting a unitary target missiles launched from PMRF during FM-3 (Codename: Stellar Impact). The USS Lake Erie was the firing ship. This mission marked the successful completion of the Aegis LEAP Intercept program. June 13, 2002 was also the date that the United States withdrew from the Anti-Ballistic Missile Treaty (ABM Treaty), which limited the development of a strategic anti-ballistic missile system (to be considered strategic Aegis would need capability against the current Russian ICBMs and SLBMs).FM-4
On November 21, 2002 Aegis BMD intercepted a unitary ballistic missile during FM-4 (Codename: Stellar Viper). FM-4 was the first Aegis BMD test to conduct the "aimpoint shift" maneuver. The aimpoint shift increases the probability that the ballistic missile ordnance will be destroyed at intercept. The USS Lake Erie was the launching ship.FM-5
On June 18, 2003 the FM-5 mission (Codename: Stellar Hammer) resulted in the first test failure of an operational Aegis BMD system. During the test, the SDACS propulsion system used to guide the SM-3's kinetic warhead suffered a malfunction after ignition. It is important to note that prior to the rocket motor failure the SM-3 kinetic warhead was on an intercept course with the test target. The USS Lake Erie was the firing ship.[40]FM-6
The next mission, FM-6 (Codename: Stellar Defender) was conducted on December 11, 2003. A modification to the SDACS design was implemented so as not to endanger the warhead's ability to intercept. This override allowed the KW to navigate with reduced (but no less lethal) capability. FM-6 once again featured a successful interception. The USS Lake Erie was the firing ship.[41]FTM 04-1 (FM-7)
After the FM-6 mission, the Missile Defense Agency implemented a change to the flight test naming convention for all subsequent ABMD flight tests. According to MDA the new convention better reflected the program's position within the Block 2004/2006 schema of development. The new name, Flight Test Mission (FTM) 04-1 (Codename: Stellar Dragon), indicated that this would be the first flight test under the Block 2004 development cycle for Aegis BMD. On February 24, 2005, FM-7, or FTM 04-1, demonstrated yet again the system's ability to destroy an enemy ballistic missile. The USS Lake Erie was the firing ship.[42]FTM 04-2 (FM-8)
FM-8, or FTM 04-2 (Codename: Stellar Valkyrie), was the first mission to utilize a target missile with a separating warhead. This new target missile, termed a Medium Range Target (MRT) more closely resembled real world threat missiles, but the SM-3 Block I missile was not fooled and intercepted the warhead to score the sixth interception for the program out of seven tries on November 17, 2005. The USS Lake Erie was the firing ship.[43]FTM 04-3 (FM-9)
FM-9 or FTM 04-3 was canceled as it was a repeat of the FTM 04-2 mission and therefore deemed redundant.FTM-10
FTM-10 (Codename: Stellar Predator) was conducted in four events. On June 23, 2006 event two demonstrated the Aegis BMD system. The FTM-10 test target was the MRT with a separating warhead. The USS Shiloh was the launching ship and utilized the Aegis Weapon System version 3.6 for the first time. This test was the first to feature the latest model of the SM-3, the Block Ia. The mission was considered a success when the KW tracked, selected and intercepted the MRT reentry vehicle (RV).FTM-10 marked the first time another country participated in a sea-based anti-ballistic missile exercise. The Japanese government was interested in purchasing a system similar to Aegis BMD to deter potential threats and was invited to participate in the FTM-10 exercise. The Japanese naval vessel JDS Kirishima (a Kongō class destroyer) was stationed off the coast of PMRF and observed all FTM-10 events.[44]
No comments:
Post a Comment