From Wikipedia, the free encyclopedia
This article covers the design of horizontal axis wind turbines (HAWT) since the majority of commercial turbines use this design.
In 1919 the physicist Albert Betz showed that for a hypothetical ideal wind-energy extraction machine, the fundamental laws of conservation of mass and energy allowed no more than 16/27 (59.3%) of the kinetic energy of the wind to be captured. This Betz' law limit can be approached by modern turbine designs which may reach 70 to 80% of this theoretical limit.
In addition to aerodynamic design of the blades, design of a complete wind power system must also address design of the hub, controls, generator, supporting structure and foundation. Further design questions arise when integrating wind turbines into electrical power grids.
Contents
Aerodynamics
Main article: Wind turbine aerodynamics
The shape and dimensions of the blades of the wind turbine are
determined by the aerodynamic performance required to efficiently
extract energy from the wind, and by the strength required to resist the
forces on the blade.In 1919 the physicist Albert Betz showed that for a hypothetical ideal wind-energy extraction machine, the fundamental laws of conservation of mass and energy allowed no more than 16/27 (59.3%) of the kinetic energy of the wind to be captured. This Betz' law limit can be approached by modern turbine designs which may reach 70 to 80% of this theoretical limit.
Power control
The speed at which a wind turbine rotates must be controlled for efficient power generation and to keep the turbine components within designed speed and torque limits. The centrifugal force on the spinning blades increases as the square of the rotation speed, which makes this structure sensitive to overspeed. Because the power of the wind increases as the cube of the wind speed, turbines have to be built to survive much higher wind loads (such as gusts of wind) than those from which they can practically generate power. Wind turbines have ways of reducing torque in high winds.A wind turbine is designed to produce power over a range of wind speeds. All wind turbines are designed for a maximum wind speed, called the survival speed, above which they will be damaged. The survival speed of commercial wind turbines is in the range of 40 m/s (144 km/h, 89 MPH) to 72 m/s (259 km/h, 161 MPH). The most common survival speed is 60 m/s (216 km/h, 134 MPH).
If the rated wind speed is exceeded the power has to be limited. There are various ways to achieve this.
A control system involves three basic elements: sensors to measure process variables, actuators to manipulate energy capture and component loading, and control algorithms to coordinate the actuators based on information gathered by the sensors.[2]
Stall
Stalling works by increasing the angle at which the relative wind strikes the blades (angle of attack), and it reduces the induced drag (drag associated with lift). Stalling is simple because it can be made to happen passively (it increases automatically when the winds speed up), but it increases the cross-section of the blade face-on to the wind, and thus the ordinary drag. A fully stalled turbine blade, when stopped, has the flat side of the blade facing directly into the wind.A fixed-speed HAWT (Horizontal Axis Wind Turbine) inherently increases its angle of attack at higher wind speed as the blades speed up. A natural strategy, then, is to allow the blade to stall when the wind speed increases. This technique was successfully used on many early HAWTs. However, on some of these blade sets, it was observed that the degree of blade pitch tended to increase audible noise levels.
Vortex generators may be used to control the lift characteristics of the blade. The VGs are placed on the airfoil to enhance the lift if they are placed on the lower (flatter) surface or limit the maximum lift if placed on the upper (higher camber) surface.[3]
Furling works by decreasing the angle of attack, which reduces the induced drag from the lift of the rotor, as well as the cross-section. One major problem in designing wind turbines is getting the blades to stall or furl quickly enough should a gust of wind cause sudden acceleration. A fully furled turbine blade, when stopped, has the edge of the blade facing into the wind.
Loads can be reduced by making a structural system softer or more flexible.[2] This could be accomplished with downwind rotors or with curved blades that twist naturally to reduce angle of attack at higher wind speeds. These systems will be nonlinear and will couple the structure to the flow field - thus, design tools must evolve to model these nonlinearities.
Standard modern turbines all furl the blades in high winds. Since furling requires acting against the torque on the blade, it requires some form of pitch angle control, which is achieved with a slewing drive. This drive precisely angles the blade while withstanding high torque loads. In addition, many turbines use hydraulic systems. These systems are usually spring-loaded, so that if hydraulic power fails, the blades automatically furl. Other turbines use an electric servomotor for every rotor blade. They have a small battery-reserve in case of an electric-grid breakdown. Small wind turbines (under 50 kW) with variable-pitching generally use systems operated by centrifugal force, either by flyweights or geometric design, and employ no electric or hydraulic controls.
Fundamental gaps exist in pitch control, limiting the reduction of energy costs, according to a report from a coalition of researchers from universities, industry, and government, supported by the Atkinson Center for a Sustainable Future. Load reduction is currently focused on full-span blade pitch control, since individual pitch motors are the actuators currently available on commercial turbines. Significant load mitigation has been demonstrated in simulations for blades, tower, and drive train. However, there is still research needed, the methods for realization of full-span blade pitch control need to be developed in order to increase energy capture and mitigate fatigue loads.
A control technique applied to the pitch angle is done by comparing the current active power of the engine with the value of active power at the rated engine speed (active power reference, Ps reference). Control of the pitch angle in this case is done with a PI controller controls. However, in order to have a realistic response to the control system of the pitch angle, the actuator uses the time constant Tservo, an integrator and limiters so as the pitch angle to be from 0° to 30° with a rate of change (± 10° per sec).
[2]
Other controls
Generator torque
Modern large wind turbines are variable-speed machines. When the wind speed is below rated, generator torque is used to control the rotor speed in order to capture as much power as possible. The most power is captured when the tip speed ratio is held constant at its optimum value (typically 6 or 7). This means that as wind speed increases, rotor speed should increase proportionally. The difference between the aerodynamic torque captured by the blades and the applied generator torque controls the rotor speed. If the generator torque is lower, the rotor accelerates, and if the generator torque is higher, the rotor slows down. Below rated wind speed, the generator torque control is active while the blade pitch is typically held at the constant angle that captures the most power, fairly flat to the wind. Above rated wind speed, the generator torque is typically held constant while the blade pitch is active.One technique to control a permanent magnet synchronous motor is Field Oriented Control. Field Oriented Control is a closed loop strategy composed of two current controllers (an inner loop and outer loop cascade design) necessary for controlling the torque, and one speed controller.
Constant torque angle control
In this control strategy the d axis current is kept zero, while the vector current is align with the q axis in order to maintain the torque angle equal with 90o. This is one of the most used control strategy because of the simplicity, by controlling only the Iqs current. So, now the electromagnetic torque equation of the permanent magnet synchronous generator is simply a linear equation depend on the Iqs current only.
So, the electromagnetic torque for Ids = 0 (we can achieve that with the d-axis controller) is now:
Te= 3/2 p (λpm Iqs + (Lds-Lqs) Ids Iqs )= 3/2 p λpm Iqs
Yawing
Electrical braking
Cyclically braking causes the blades to slow down, which increases the stalling effect, reducing the efficiency of the blades. This way, the turbine's rotation can be kept at a safe speed in faster winds while maintaining (nominal) power output. This method is usually not applied on large grid-connected wind turbines.
Mechanical braking
A mechanical drum brake or disk brake is used to stop turbine in emergency situation such as extreme gust events or over speed. This brake is a secondary means to hold the turbine at rest for maintenance, with a rotor lock system as primary means. Such brakes are usually applied only after blade furling and electromagnetic braking have reduced the turbine speed generally 1 or 2 rotor RPM, as the mechanical brakes can create a fire inside the nacelle if used to stop the turbine from full speed. The load on the turbine increases if the brake is applied at rated RPM. Mechanical brakes are driven by hydraulic systems and are connected to main control box.Turbine size
Labor and maintenance costs increase only gradually with increasing turbine size, so to minimize costs, wind farm turbines are basically limited by the strength of materials, and siting requirements.
Typical modern wind turbines have diameters of 40 to 90 metres (130 to 300 ft) and are rated between 500 kW and 2 MW. As of 2014 the most powerful turbine, the Vestas V-164, is rated at 8 MW and has a rotor diameter of 164m.[6]
Generator
In conventional wind turbines, the blades spin a shaft that is connected through a gearbox to the generator. The gearbox converts the turning speed of the blades 15 to 20 rotations per minute for a large, one-megawatt turbine into the faster 1,800 rotations per minute that the generator needs to generate electricity.[8] Analysts from GlobalData estimate that gearbox market grows from $3.2bn in 2006 to $6.9bn in 2011, and to $8.1bn by 2020. Market leaders were Winergy in 2011.[9] The use of magnetic gearboxes has also been explored as a way of reducing wind turbine maintenance costs.[10]
Older style wind generators rotate at a constant speed, to match power line frequency, which allowed the use of less costly induction generators[citation needed]. Newer wind turbines often turn at whatever speed generates electricity most efficiently. The varying output frequency and voltage can be matched to the fixed values of the grid using multiple technologies such as doubly fed induction generators or full-effect converters where the variable frequency current produced is converted to DC and then back to AC. Although such alternatives require costly equipment and cause power loss, the turbine can capture a significantly larger fraction of the wind energy. In some cases, especially when turbines are sited offshore, the DC energy will be transmitted from the turbine to a central (onshore) inverter for connection to the grid.
Gearless wind turbines (also called direct drive) get rid of the gearbox completely. Instead, the rotor shaft is attached directly to the generator, which spins at the same speed as the blades. Enercon and EWT (Formerly known as Lagerwey) have produced gearless wind turbines with separately electrically excited generators for many years,[11] and Siemens produces a gearless "inverted generator" 3 MW model[12][13] while developing a 6 MW model.[14] To make up for a direct drive generator's slower spinning rate, the diameter of the generator's rotor is increased hence containing more magnets which lets it create a lot of power when turning slowly.
Gearless wind turbines are often heavier than gear based wind turbines. A study by the EU called "Reliawind"[15] based on the largest sample size of turbines, has shown that the reliability of gearboxes is not the main problem in wind turbines. The reliability of direct drive turbines offshore is still not known, since the sample size is so small.
Experts from Technical University of Denmark estimate that a geared generator with permanent magnets may use 25 kg/MW of the rare earth element Neodymium, while a gearless may use 250 kg/MW.[16]
In December 2011, the US Department of Energy published a report stating critical shortage of rare earth elements such as neodymium used in large quantities for permanent magnets in gearless wind turbines.[17] China produces more than 95% of rare earth elements, while Hitachi holds more than 600 patents covering Neodymium magnets. Direct-drive turbines require 600 kg of permanent magnet material per megawatt, which translates to several hundred kilograms of rare earth content per megawatt, as neodymium content is estimated to be 31% of magnet weight. Hybrid drivetrains (intermediate between direct drive and traditional geared) use significantly less rare earth materials. While permanent magnet wind turbines only account for about 5% of the market outside of China, their market share inside of China is estimated at 25% or higher. Demand for neodymium in wind turbines is estimated to be 1/5 of that in electric vehicles.[17]
Blades
Blade design
In contrast, older style wind turbines were designed with heavier steel blades, which have higher inertia, and rotated at speeds governed by the AC frequency of the power lines. The high inertia buffered the changes in rotation speed and thus made power output more stable.
It is generally understood that noise increases with higher blade tip speeds. To increase tip speed without increasing noise would allow reduction the torque into the gearbox and generator and reduce overall structural loads, thereby reducing cost.[2] The reduction of noise is linked to the detailed aerodynamics of the blades, especially factors that reduce abrupt stalling. The inability to predict stall restricts the development of aggressive aerodynamic concepts. .[2]
A blade can have a lift-to-drag ratio of 120,[18] compared to 70 for a sailplane and 15 for an airliner.[19]
The hub
Blade count
Wind turbines developed over the last 50 years have almost universally used either two or three blades. However, there are patents that present designs with additional blades, such as Chan Shin's Multi-unit rotor blade system integrated wind turbine.[20] Aerodynamic efficiency increases with number of blades but with diminishing return. Increasing the number of blades from one to two yields a six percent increase in aerodynamic efficiency, whereas increasing the blade count from two to three yields only an additional three percent in efficiency.[21] Further increasing the blade count yields minimal improvements in aerodynamic efficiency and sacrifices too much in blade stiffness as the blades become thinner.[citation needed]
Theoretically, an infinite number of blades of zero width is the most efficient, operating at a high value of the tip speed ratio. But other considerations lead to a compromise of only a few blades.[22]
Component costs that are affected by blade count are primarily for materials and manufacturing of the turbine rotor and drive train. Generally, the lower the number of blades, the lower the material and manufacturing costs will be. In addition, the lower the number of blades, the higher the rotational speed can be. This is because blade stiffness requirements to avoid interference with the tower limit how thin the blades can be manufactured, but only for upwind machines; deflection of blades in a downwind machine results in increased tower clearance. Fewer blades with higher rotational speeds reduce peak torques in the drive train, resulting in lower gearbox and generator costs.
System reliability is affected by blade count primarily through the dynamic loading of the rotor into the drive train and tower systems. While aligning the wind turbine to changes in wind direction (yawing), each blade experiences a cyclic load at its root end depending on blade position. This is true of one, two, three blades or more. However, these cyclic loads when combined together at the drive train shaft are symmetrically balanced for three blades, yielding smoother operation during turbine yaw. Turbines with one or two blades can use a pivoting teetered hub to also nearly eliminate the cyclic loads into the drive shaft and system during yawing. A Chinese 3.6 MW two-blade is being tested in Denmark.[23] Mingyang won a bid for 87 MW (29 * 3 MW) two-bladed offshore wind turbines near Zhuhai in 2013.[24][25][26]
Finally, aesthetics can be considered a factor in that some people find that the three-bladed rotor is more pleasing to look at than a one- or two-bladed rotor.
Blade materials
- wide availability and easy processing to reduce cost and maintenance
- low weight or density to reduce gravitational forces
- high strength to withstand strong loading of wind and gravitational force of the blade itself
- high fatigue resistance to withstand cyclic loading
- high stiffness to ensure stability of the optimal shape and orientation of the blade and clearance with the tower
- high fracture toughness
- the ability to withstand environmental impacts such as lightning strikes, humidity, and temperature[27]
New wind turbine designs push power generation from the single megawatt range to upwards of 10 megawatts using larger and larger blades. A larger area effectively increases the tip-speed ratio of a turbine at a given wind speed, thus increasing its energy extraction.[28] Computer-aided engineering software such as HyperSizer (originally developed for spacecraft design) can be used to improve blade design.[29][30]
As of 2015 the rotor diameters of onshore wind turbine blades are as large as 130 meters,[31] while the diameter of offshore turbines reach 170 meters.[32] In 2001, an estimated 50 million kilograms of fibreglass laminate were used in wind turbine blades.[33]
An important goal of larger blade systems is to control blade weight. Since blade mass scales as the cube of the turbine radius, loading due to gravity constrains systems with larger blades.[34] Gravitational loads include axial and tensile/ compressive loads (top/bottom of rotation) as well as bending (lateral positions). The magnitude of these loads fluctuates cyclically and the edgewise moments (see below) are reversed every 180° of rotation. Typical rotor speeds and design life are ~10rpm and 20 years, respectively, with the number of lifetime revolutions on the order of 10^8. Considering wind, it is expected that turbine blades go through ~10^9 loading cycles. Wind is another source of rotor blade loading. Lift causes bending in the flapwise direction (out of rotor plane) while air flow around the blade cause edgewise bending (in the rotor plane). Flapwise bending involves tension on the pressure (upwind) side and compression on the suction (downwind) side. Edgewise bending involves tension on the leading edge and compression on the trailing edge.
Wind loads are cyclical because of natural variability in wind speed and wind shear (higher speeds at top of rotation).
Failure in ultimate loading of wind-turbine rotor blades exposed to wind and gravity loading is a failure mode that needs to be considered when the rotor blades are designed. The wind speed that causes bending of the rotor blades exhibits a natural variability, and so does the stress response in the rotor blades. Also, the resistance of the rotor blades, in terms of their tensile strengths, exhibits a natural variability. [35]
In light of these failure modes and increasingly larger blade systems, there has been continuous effort toward developing cost-effective materials with higher strength-to-mass ratios. In order to extend the current 20 year lifetime of blades and enable larger area blades to be cost-effective, the design and materials need to be optimized for stiffness, strength, and fatigue resistance.[27]
The majority of current commercialized wind turbine blades are made from fiber-reinforced polymers (FRP’s), which are composites consisting of a polymer matrix and fibers. The long fibers provide longitudinal stiffness and strength, and the matrix provides fracture toughness, delamination strength, out-of-plane strength, and stiffness.[27] Material indices based on maximizing power efficiency, and having high fracture toughness, fatigue resistance, and thermal stability, have been shown to be highest for glass and carbon fiber reinforced plastics (GFRP’s and CFRPs).[36]
Epoxy-based composites have environmental, production, and cost advantages over other resin systems. Epoxies also allow shorter cure cycles, increased durability, and improved surface finish. Prepreg operations further reduce processing time over wet lay-up systems. As turbine blades pass 60 metres, infusion techniques become more prevalent; the traditional resin transfer moulding injection time is too long as compared to the resin set-up time, limiting laminate thickness. Injection forces resin through a thicker ply stack, thus depositing the resin where in the laminate structure before gelation occurs. Specialized epoxy resins have been developed to customize lifetimes and viscosity.[38]
Carbon fibre-reinforced load-bearing spars can reduce weight and increase stiffness. Using carbon fibres in 60 metre turbine blades is estimated to reduce total blade mass by 38% and decrease cost by 14% compared to 100% fibreglass. Carbon fibres have the added benefit of reducing the thickness of fiberglass laminate sections, further addressing the problems associated with resin wetting of thick lay-up sections. Wind turbines may also benefit from the general trend of increasing use and decreasing cost of carbon fibre materials.[33]
Although glass and carbon fibers have many optimal qualities for turbine blade performance, there are several downsides to these current fillers, including the fact that high filler fraction (10-70 wt%) causes increased density as well as microscopic defects and voids that often lead to premature failure.[27]
Recent developments include interest in using carbon nanotubes (CNT’s) to reinforce polymer-based nanocomposites. CNT’s can be grown or deposited on the fibers, or added into polymer resins as a matrix for FRP structures. Using nanoscale CNT’s as filler instead of traditional microscale filler (such as glass or carbon fibers) results in CNT/polymer nanocomposites, for which the properties can be changed significantly at very low filler contents (typically < 5 wt%). They have very low density, and improve the elastic modulus, strength, and fracture toughness of the polymer matrix. The addition of CNT’s to the matrix also reduces the propagation of interlaminar cracks which can be a problem in traditional FRP’s.[27]
Further improvement is possible through the use of carbon nanofibers (CNF’s) in the blade coatings. A major problem in desert environments is erosion of the leading edges of blades by wind carrying sand, which increases roughness and decreases aerodynamic performance. The particle erosion resistance of fiber-reinforced polymers is poor when compared to metallic materials and elastomers, and needs to be improved. It has been shown that the replacement of glass fiber with CNF on the composite surface greatly improves erosion resistance. CNF’s have also been shown to provide good electrical conductivity (important for lightning strikes), high damping ratio, and good impact-friction resistance. These properties make CNF-based nanopaper a prospective coating for wind turbine blades.[39][40]
Tower
Tower production |
Tower height
Wind velocities increase at higher altitudes due to surface aerodynamic drag (by land or water surfaces) and the viscosity of the air. The variation in velocity with altitude, called wind shear, is most dramatic near the surface. Typically, the variation follows the wind profile power law, which predicts that wind speed rises proportionally to the seventh root of altitude. Doubling the altitude of a turbine, then, increases the expected wind speeds by 10% and the expected power by 34%. To avoid buckling, doubling the tower height generally requires doubling the diameter of the tower as well, increasing the amount of material by a factor of at least four.At night time, or when the atmosphere becomes stable, wind speed close to the ground usually subsides whereas at turbine hub altitude it does not decrease that much or may even increase. As a result, the wind speed is higher and a turbine will produce more power than expected from the 1/7 power law: doubling the altitude may increase wind speed by 20% to 60%. A stable atmosphere is caused by radiative cooling of the surface and is common in a temperate climate: it usually occurs when there is a (partly) clear sky at night. When the (high altitude) wind is strong (a 10-meter wind speed higher than approximately 6 to 7 m/s) the stable atmosphere is disrupted because of friction turbulence and the atmosphere will turn neutral. A daytime atmosphere is either neutral (no net radiation; usually with strong winds and heavy clouding) or unstable (rising air because of ground heating—by the sun). Here again the 1/7 power law applies or is at least a good approximation of the wind profile. Indiana had been rated as having a wind capacity of 30,000 MW, but by raising the expected turbine height from 50 m to 70 m, the wind capacity estimate was raised to 40,000 MW, and could be double that at 100 m.[41]
For HAWTs, tower heights approximately two to three times the blade length have been found to balance material costs of the tower against better utilisation of the more expensive active components.
Tower materials
Currently, the majority of wind turbines are supported by conical tubular steel towers. These towers represent 30% – 65% of the turbine weight and therefore account for a large percentage of the turbine transportation costs. The use of lighter materials in the tower could greatly reduce the overall transport and construction cost of wind turbines, however the stability must be maintained.[46] Higher grade S500 steel costs 20%-25% more than S335 steel (standard structural steel), but it requires 30% less material because of its improved strength. Therefore, replacing wind turbine towers with S500 steel would result in a net savings in both weight and cost.[47]Another disadvantage of conical steel towers is that constructing towers that meet the requirements of wind turbines taller than 90 meters proves challenging. High performance concrete shows potential to increase tower height and increase the lifetime of the towers. A hybrid of prestressed concrete and steel has shown improved performance over standard tubular steel at tower heights of 120 meters.[48] Concrete also gives the benefit of allowing for small precast sections to be assembled on site, avoiding the challenges steel faces during transportation.[49] One downside of concrete towers is the higher CO2 emissions during concrete production as compared to steel. However, the overall environmental benefit should be higher if concrete towers can double the wind turbine lifetime.[50]
Wood is being investigated as a material for wind turbine towers, and a 100 metre tall tower supporting a 1.5 MW turbine has been erected in Germany. The wood tower shares the same transportation benefits of the segmented steel shell tower, but without the steel resource consumption.[51][52]
Connection to the electric grid
All grid-connected wind turbines, from the first one in 1939 until the development of variable-speed grid-connected wind turbines in the 1970s, were fixed-speed wind turbines. As recently as 2003, nearly all grid-connected wind turbines operated at exactly constant speed (synchronous generators) or within a few percent of constant speed (induction generators).[53][54] As of 2011, many operational wind turbines used fixed speed induction generators (FSIG).[55] As of 2011, most new grid-connected wind turbines are variable speed wind turbines—they are in some variable speed configuration.[55]Early wind turbine control systems were designed for peak power extraction, also called maximum power point tracking—they attempt to pull the maximum possible electrical power from a given wind turbine under the current wind conditions.[56] More recent wind turbine control systems deliberately pull less electrical power than they possibly could in most circumstances, in order to provide other benefits, which include:
- spinning reserves to quickly produce more power when needed—such as when some other generator suddenly drops from the grid—up to the max power supported by the current wind conditions.[57]
- Variable-speed wind turbines can (very briefly) produce more power than the current wind conditions can support, by storing some wind energy as kinetic energy (accelerating during brief gusts of faster wind) and later converting that kinetic energy to electric energy (decelerating, either when more power is needed elsewhere, or during short lulls in the wind, or both).[58][59]
- damping (electrical) subsynchronous resonances in the grid[60]
- damping (mechanical) resonances in the tower[61][62]
A useful technique to connect a permanent magnet synchronous generator to the grid is by using a back-to-back converter. Also, we can have control schemes so as to achieve unity power factor in the connection to the grid. In that way the wind turbine will not consume reactive power, which is the most common problem with wind turbines that use induction machines. This leads to a more stable power system. Moreover, with different control schemes a wind turbine with a permanent magnet synchronous generator can provide or consume reactive power. So, it can work as a dynamic capacitor/inductor bank so as to help with the power systems' stability.
Reactive power regulation consists of one PI controller in order to achieve operation with unity power factor (i.e. Qgrid = 0 ). It is obvious that IdN has to be regulated to reach zero at steady-state (IdNref = 0).
We can see the complete system of the grid side converter and the cascaded PI controller loops in the figure in the right.
Foundations
The foundations for a conventional engineering structure are designed mainly to transfer the vertical load (dead weight) to the ground, this generally allows for a comparatively unsophisticated arrangement to be used. However, in the case of wind turbines, due to the high wind and environmental loads experienced there is a significant horizontal dynamic load that needs to be appropriately restrained.
This loading regime causes large moment loads to be applied to the foundations of a wind turbine. As a result, considerable attention needs to be given when designing the footings to ensure that the turbines are sufficiently restrained to operate efficiently.[64] In the current Det Norske Veritas (DNV) guidelines for the design of wind turbines the angular deflection of the foundations are limited to 0.5°.[65] DNV guidelines regarding earthquakes suggest that horizontal loads are larger than vertical loads for offshore wind turbines, while guidelines for tsunamis only suggest designing for maximum sea waves.[66] In contrast, IEC suggests considering tsunami loads.[67]
Scale model tests using a 50-g centrifuge are being performed at the Technical University of Denmark to test monopile foundations for offshore wind turbines at 30 to 50-m water depth.[68]
Costs
One way to achieve this is to implement well-documented, validated analysis codes, according to a 2011 report from a coalition of researchers from universities, industry, and government, supported by the Atkinson Center for a Sustainable Future.[2]
The major parts of a modern turbine may cost (percentage of total): tower 22%, blades 18%, gearbox 14%, generator 8%.[72][73]
Efficiency and wind speed
The efficiency of a wind turbine is a maximum at its design wind velocity, and efficiency decreases with the fluctuations in wind. The lowest velocity at which the turbine develops its full power is known as rated wind velocity. Below some minimum wind velocity, no useful power output can be produced from wind turbine. There are limits on both the minimum and maximum wind velocity for the efficient operation of wind turbines.[74]Design specification
The design specification for a wind-turbine will contain a power curve and guaranteed availability. With the data from the wind resource assessment it is possible to calculate commercial viability.[1] The typical operating temperature range is −20 to 40 °C (−4 to 104 °F). In areas with extreme climate (like Inner Mongolia or Rajasthan) specific cold and hot weather versions are required.Wind turbines can be designed and validated according to IEC 61400 standards.[67]
Low temperature
Utility-scale wind turbine generators have minimum temperature operating limits which apply in areas that experience temperatures below –20 °C. Wind turbines must be protected from ice accumulation. It can make anemometer readings inaccurate and which, in certain turbine control designs, can cause high structure loads and damage. Some turbine manufacturers offer low-temperature packages at a few percent extra cost, which include internal heaters, different lubricants, and different alloys for structural elements. If the low-temperature interval is combined with a low-wind condition, the wind turbine will require an external supply of power, equivalent to a few percent of its rated power, for internal heating. For example, the St. Leon, Manitoba project has a total rating of 99 MW and is estimated to need up to 3 MW (around 3% of capacity) of station service power a few days a year for temperatures down to –30 °C. This factor affects the economics of wind turbine operation in cold climates.Vertical axis wind turbine
A VAWT tipped sideways, with the axis perpendicular to the wind streamlines, functions similarly. A more general term that includes this option is "transverse axis wind turbine" or "cross-flow wind turbine." For example, the original Darrieus patent, US Patent 1835018, includes both options.
Drag-type VAWTs such as the Savonius rotor typically operate at lower tipspeed ratios than lift-based VAWTs such as Darrieus rotors and cycloturbines.
In 2015 the Vortexis VAWT, an entirely new type of Vertical Axis Wind Turbine, received patent approval, US Patent 9022721, and was introduced to the market in 2016 as a prototype producing greater blade efficiency than ever measured before.[2] The Vortexis principle is based on a vertical hub wind turbine shaped from a concentric plan of altered stator cutting edges to give liquid stream increasing speed into a course of action of rotatable sharp edges secured to a generator for conjuring electrical force era.
Contents
General aerodynamics
The forces and the velocities acting in a Darrieus turbine are depicted in figure 1. The resultant velocity vector, , is the vectorial sum of the undisturbed upstream air velocity, , and the velocity vector of the advancing blade, .From geometrical considerations, the resultant airspeed flow and the angle of attack are calculated as follows:
[3]
where is the tip speed ratio parameter.
The resultant aerodynamic force is resolved either into lift (F_L) - drag (D) components or normal (N) - tangential (T) components. The forces are considered acting at the quarter-chord point, and the pitching moment is determined to resolve the aerodynamic forces. The aeronautical terms "lift" and "drag" refer to the forces across (lift) and along (drag) the approaching net relative airflow. The tangential force acts along the blade's velocity, pulling the blade around, and the normal force acts radially, pushing against the shaft bearings. The lift and the drag force are useful when dealing with the aerodynamic forces around the blade such as dynamic stall, boundary layer etc.; while when dealing with global performance, fatigue loads, etc., it is more convenient to have a normal-tangential frame. The lift and the drag coefficients are usually normalised by the dynamic pressure of the relative airflow, while the normal and tangential coefficients are usually normalised by the dynamic pressure of undisturbed upstream fluid velocity.
A = Surface Area R = Radius of turbine
The amount of power, P, that can be absorbed by a wind turbine:
Where is the power coefficient, is air density, is the swept area of the turbine, and is the wind speed.[4]
Advantages of vertical axis wind turbines
VAWTs offer a number of advantages over traditional horizontal-axis wind turbines (HAWTs).- They are omni-directional and do not need to track the wind. This makes them more reliable due to their not requiring a complex mechanism and motors to yaw the rotor and pitch the blades. In addition, any claimed inefficiencies are in fact cancelled out by the VAWT's ability to take advantage of turbulent and gusty winds. Such winds are not harvested by HAWTs, and in fact cause accelerated fatigue for HAWTs.
- The gearbox of a VAWT takes much less fatigue than that of a HAWT. Should it be required, replacement is less costly and simpler, as the gearbox is easily accessible at ground level. This means that a crane or other large equipment is not needed at the site, reducing cost and impact on the environment. Motor and gearbox failures generally increase the operational and maintenance costs of HAWT wind farms both on and offshore.
- VAWTs (4Navitas) can use a screw pile foundation, allowing a huge reduction in the carbon cost of an installation as well as a reduction in road transport of concrete during installation. They can be fully recycled at the end of the their life.
- VAWT wings of the Darrieus type have a constant chord and so are easier to manufacture than the blades of a HAWT, which have a much more complex shape and structure.
- VAWTs can be grouped more closely in wind farms, increasing the generated power per unit of land area.
- VAWTs can be installed on a wind farm below the existing HAWTs; this will improve the efficiency (power output) of the existing farm.[5]
- Research at Caltech has also shown that a carefully designed wind farm using VAWTs can have an output power ten times that of a HAWT wind farm of the same size.[6]
Disadvantages of vertical axis wind turbines
The majority of the disadvantages associated with VAWT technology have been overcome by the use of modern composite materials and improvements in engineering and design.The blades of a VAWT were fatigue-prone due to the wide variation in applied forces during each rotation. This has been overcome by the use of modern composite materials and improvements in design; the use of aerodynamic wing tips causes the spreader wing connections to have a static load. The vertically oriented blades used in early models twisted and bent during each turn, causing them to crack. Over time, these blades broke apart, sometimes leading to catastrophic failure. VAWTs have proven less reliable than HAWTs.[7] Modern designs of VAWTs have overcome many of the issues associated with early designs, [8] however work remains to be done. One of the major outstanding challenges facing vertical axis wind turbine technology is dynamic stall of the blades as the angle of attack varies rapidly. [9] [10]
Applications
The Windspire, a small VAWT intended for individual (home or office) use was developed in the early 2000s by US company Mariah Power. The company reported that several units had been installed across the US by June 2008.[11]Arborwind, an Ann-Arbor (Michigan, US) based company, produces a patented small VAWT which has been installed at several US locations as of 2013.[12]
In 2011, Sandia National Laboratories wind-energy researchers began a five-year study of applying VAWT design technology to offshore wind farms.[13] The researchers stated: "The economics of offshore windpower are different from land-based turbines, due to installation and operational challenges. VAWTs offer three big advantages that could reduce the cost of wind energy: a lower turbine center of gravity; reduced machine complexity; and better scalability to very large sizes. A lower center of gravity means improved stability afloat and lower gravitational fatigue loads. Additionally, the drivetrain on a VAWT is at or near the surface, potentially making maintenance easier and less time-consuming. Fewer parts, lower fatigue loads and simpler maintenance all lead to reduced maintenance costs."
A 24-unit VAWT demonstration plot was installed in southern California in the early 2010s by Caltech aeronautical professor John Dabiri. His design was incorporated in a 10-unit generating farm installed in 2013 in the Alaskan village of Igiugig.[14]
Dulas, Anglesey received permission in March 2014 to install a prototype VAWT on the breakwater at Port Talbot waterside. The turbine is a new design, supplied by Wales-based C-FEC (Swansea),[15] and will be operated for a two-year trial.[16] This VAWT incorporates a wind shield which blocks the wind from the advancing blades, and thus requires a wind-direction sensor and a positioning mechanism, as opposed to the "egg-beater" types of VAWTs discussed above.[15]
4 Navitas (Blackpool) have been operating two prototype VAWTs since June 2013, powered by a Siemens Power Train, they are due to enter the market in January 2015, with a free technology share to interested parties. 4 Navitas are now in the process of scaling their prototype to 1 MW, (working with PERA Technology) and then floating the turbine on an offshore pontoon. This will reduce the cost of offshore wind energy.
The Dynasphere, is Michael Reynolds' (from Earthship fame) 4th generation vertical axis windmill. These windmills have two 1.5 KW generators and can produce electricity at very low speeds.[17]
No comments:
Post a Comment