From Wikipedia, the free encyclopedia
Anti-consumerism |
---|
Advocates of autonomous building describe advantages that include reduced environmental impacts, increased security, and lower costs of ownership. Some cited advantages satisfy tenets of green building, not independence per se (see below). Off-grid buildings often rely very little on civil services and are therefore safer and more comfortable during civil disaster or military attacks. (Off-grid buildings would not lose power or water if public supplies were compromised for some reason.)
Most of the research and published articles concerning autonomous building focus on residential homes.
British architects Brenda and Robert Vale have said that, as of 2002,
"It is quite possible in all parts of Australia to construct a 'house with no bills', which would be comfortable without heating and cooling, which would make its own electricity, collect its own water and deal with its own waste...These houses can be built now, using off-the-shelf techniques. It is possible to build a "house with no bills" for the same price as a conventional house, but it would be (25%) smaller."[1]
Contents
History
In the 1970s, a group of activists and engineers calling themselves the New Alchemists believed the warnings of imminent resource depletion and starvation. The New Alchemists were famous for the depth of research effort placed in their projects. Using conventional construction techniques, they designed a series of "bioshelter" projects, the most famous of which was the Ark Bioshelter community for Prince Edward Island. They published the plans for all of these, with detailed design calculations and blueprints. The Ark used wind based water pumping and electricity, and was self-contained in food production. It had living quarters for people, fish tanks raising tilapia for protein, a greenhouse watered with fish water and a closed loop sewage reclamation system that recycled human waste into sanitized fertilizer for the fish tanks. As of January 2010, the successor organization to the New Alchemists has a web page up as the "New Alchemy Institute".[2] The PEI Ark has been abandoned and partially renovated several times.1990s architects such as William McDonough and Ken Yeang applied environmentally responsible building design to large commercial buildings, such as office buildings, making them largely self-sufficient in energy production. One major bank building (ING's Amsterdam headquarters) in the Netherlands was constructed to be autonomous and artistic as well.
Advantages
As an architect or engineer becomes more concerned with the disadvantages of transportation networks, and dependence on distant resources, their designs tend to include more autonomous elements. The historic path to autonomy was a concern for secure sources of heat, power, water and food. A nearly parallel path toward autonomy has been to start with a concern for environmental impacts, which cause disadvantages.Autonomous buildings can increase security and reduce environmental impacts by using on-site resources (such as sunlight and rain) that would otherwise be wasted. Autonomy often dramatically reduces the costs and impacts of networks that serve the building, because autonomy short-circuits the multiplying inefficiencies of collecting and transporting resources. Other impacted resources, such as oil reserves and the retention of the local watershed, can often be cheaply conserved by thoughtful designs.
Autonomous buildings are usually energy-efficient in operation, and therefore cost-efficient, for the obvious reason that smaller energy needs are easier to satisfy off-grid. But they may substitute energy production or other techniques to avoid diminishing returns in extreme conservation.
An autonomous structure is not always environmentally friendly. The goal of independence from support systems is associated with, but not identical to, other goals of environmentally responsible green building. However, autonomous buildings also usually include some degree of sustainability through the use of renewable energy and other renewable resources, producing no more greenhouse gases than they consume, and other measures.
Disadvantages
First and fundamentally, independence is a matter of degree. Complete independence is very hard or impossible to attain. For example, eliminating dependence on the electrical grid is relatively simple but growing all necessary food is a more demanding and time-consuming proposition.Living in an autonomous shelter can require one to make sacrifices in one's lifestyle choices, personal behavior, and social expectations. Even the most comfortable and technologically advanced autonomous houses may require some differences in behavior. Some people adjust easily. Others describe the experience as inconvenient, irritating, isolating, or even as an unwanted full-time job. A well-designed building can reduce this issue, but usually at the expense of reduced autonomy.
An autonomous house must be custom-built (or extensively retrofitted) to suit the climate and location. Passive solar techniques, alternative toilet and sewage systems, thermal massing designs, basement battery systems, efficient windowing, and the array of other design tactics require some degree of non-standard construction, added expense, ongoing experimentation and maintenance, and also have an effect on the psychology of the space.
The Vales, among others, have shown that living off-grid can be a practical, logical lifestyle choice—under certain conditions.[citation needed]
Systems
This section includes some minimal descriptions of methods, to give some feel for such a building's practicality, provide indexes to further information, and give a sense of modern trends.Water
Greywater systems reuse drained wash water to flush toilets or to water lawns and gardens. Greywater systems can halve the water use of most residential buildings; however, they require the purchase of a sump, greywater pressurization pump, and secondary plumbing. Some builders are installing waterless urinals and even composting toilets that completely eliminate water usage in sewage disposal.
The classic solution with minimal life-style changes is using a well. Once drilled, a well-foot requires substantial power. However, advanced well-foots can reduce power usage by twofold or more from older models. Well water can be contaminated in some areas. The sono arsenic filter eliminates unhealthy arsenic in well water.
However drilling a well is an uncertain activity, with aquifers depleted in some areas. It can also be expensive.
In regions with sufficient rainfall, it is often more economical to design a building to use rain, with supplementary water deliveries in a drought. Rain water makes excellent soft washwater, but needs antibacterial treatment. If used for drinking, mineral supplements or mineralization is necessary.[3]
Most desert and temperate climates get at least 250 millimetres (9.8 in) of rain per year. This means that a typical one-story house with a greywater system can supply its year-round water needs from its roof alone. In the driest areas, it might require a cistern of 30 cubic metres (7,900 US gal). Many areas average 13 millimetres (0.51 in) of rain per week, and these can use a cistern as small as 10 cubic metres (2,600 US gal).
In many areas, it is difficult to keep a roof clean enough for drinking.[4] To reduce dirt and bad tastes, systems use a metal collecting-roof and a "roof cleaner" tank that diverts the first 40 liters. Cistern water is usually chlorinated, though reverse osmosis systems provide even better quality drinking water.
Modern cisterns are usually large plastic tanks. Gravity tanks on short towers are reliable, so pump repairs are less urgent. The least expensive bulk cistern is a fenced pond or pool at ground level.
Reducing autonomy reduces the size and expense of cisterns. Many autonomous homes can reduce water use below 10 US gallons (38 L) per person per day, so that in a drought a month of water can be delivered inexpensively via truck. Self-delivery is often possible by installing fabric water tanks that fit the bed of a pick-up truck.
It can be convenient to use the cistern as a heat sink or trap for a heat pump or air conditioning system; however this can make cold drinking water warm, and in drier years may decrease the efficiency of the HVAC system.
Solar stills can efficiently produce drinking water from ditch water or cistern water, especially high-efficiency multiple effect humidification designs, which separate the evaporator(s) and condenser(s).
New technologies, like reverse osmosis can create unlimited amounts of pure water from polluted water, ocean water, and even from humid air. Water makers are available for yachts that convert seawater and electricity into potable water and brine. Atmospheric water generators extract moisture from dry desert air and filter it to pure water.
Sewage
Resource
Some home sewage treatment systems use biological treatment, usually beds of plants and aquaria, that absorb nutrients and bacteria and convert greywater and sewage to clear water. This odor- and color-free reclaimed water can be used to flush toilets and water outside plants. When tested, it approaches standards for potable water. In climates that freeze, the plants and aquaria need to be kept in a small greenhouse space. Good systems need about as much care as a large aquarium.
Electric incinerating toilets turn excrement into a small amount of ash. They are cool to the touch, have no water and no pipes, and require an air vent in a wall. They are used in remote areas where use of septic tanks is limited, usually to reduce nutrient loads in lakes.
NASA's bioreactor is an extremely advanced biological sewage system. It can turn sewage into air and water through microbial action. NASA plans to use it in the manned Mars mission.
A big disadvantage of complex biological sewage treatment systems is that if the house is empty, the sewage system biota may starve to death.
Another method is NASA's urine-to-water distillation system.
Waste
Sewage handling is essential for public health. Many diseases are transmitted by poorly functioning sewage systems.The standard system is a tiled leach field combined with a septic tank. The basic idea is to provide a small system with primary sewage treatment. Sludge settles to the bottom of the septic tank, is partially reduced by anaerobic digestion, and fluid is dispersed in the leach field. The leach field is usually under a yard growing grass. Septic tanks can operate entirely by gravity, and if well managed, are reasonably safe.
Septic tanks have to be pumped periodically by a vacuum truck to eliminate non reducing solids. Failure to pump a septic tank can cause overflow that damages the leach field, and contaminates ground water. Septic tanks may also require some lifestyle changes, such as not using garbage disposals, minimizing fluids flushed into the tank, and minimizing nondigestible solids flushed into the tank. For example, septic safe toilet paper is recommended.
However, septic tanks remain popular because they permit standard plumbing fixtures, and require few or no lifestyle sacrifices.
Composting or packaging toilets make it economical and sanitary to throw away sewage as part of the normal garbage collection service. They also reduce water use by half, and eliminate the difficulty and expense of septic tanks. However, they require the local landfill to use sanitary practices.
Incinerator systems are quite practical. The ashes are biologically safe, and less than 1/10 the volume of the original waste, but like all incinerator waste, are usually classified as hazardous waste.
Some of the oldest pre-system sewage types are pit toilets, latrines, and outhouses. These are still used in many developing countries.
Storm drains
Drainage systems are a crucial compromise between human habitability and a secure, sustainable watershed. Paved areas and lawns or turf do not allow much precipitation to filter through the ground to recharge aquifers. They can cause flooding and damage in neighbourhoods, as the water flows over the surface towards a low point.Typically, elaborate, capital-intensive storm sewer networks are engineered to deal with stormwater. In some cities, such as the Victorian era London sewers or much of the old City of Toronto, the storm water system is combined with the sanitary sewer system. In the event of heavy precipitation, the load on the sewage treatment plant at the end of the pipe becomes too great to handle and raw sewage is dumped into holding tanks, and sometimes into surface water.
Autonomous buildings can address precipitation in a number of ways:
If a water absorbing swale for each yard is combined with permeable concrete streets, storm drains can be omitted from the neighbourhood. This can save more than $800 per house (1970s) by eliminating storm drains.[7] One way to use the savings is to purchase larger lots, which permits more amenities at the same cost. Permeable concrete is an established product in warm climates, and in development for freezing climates. In freezing climates, the elimination of storm drains can often still pay for enough land to construct swales (shallow water collecting ditches) or water impeding berms instead. This plan provides more land for homeowners and can offer more interesting topography for landscaping.
A green roof captures precipitation and uses the water to grow plants. It can be built into a new building or used to replace an existing roof.
Electricity
Further information: Microgeneration
Further information: Zero emissions
Using a solar roof, solar cells can provide electric power. Solar roofs have the potential to be more cost-effective than retrofitted solar power, because buildings need roofs anyway. Modern solar cells last about 40 years, which makes them a reasonable investment in some areas. At a sufficient angle, solar cells are cleaned by run-off rain water and therefore have almost no life-style impact.
A number of areas that lack sun have wind. To generate power, the average autonomous house needs only one small wind generator, 5 metres or less in diameter. On a 30 metre high tower, this turbine can provide enough power to supplement solar power on cloudy days. Commercially available wind turbines use sealed, one-moving-part AC generators and passive, self-feathering blades for years of operation without service.
The largest advantage of wind power is that larger wind turbines have a lower per-watt cost than solar cells, provided there is wind. However, location is critical. Just as some locations lack sun for solar cells, some locations lack sufficient wind for an economical turbine installation. In the Great Plains of the United States a 10-metre turbine can supply enough energy to heat and cool a well-built all-electric house. Economic use in other areas requires research, and possibly a site-survey.[9]
During times of low demand, excess power can be stored in batteries for future use. However, batteries need to be replaced every few years. In many areas, battery expenses can be eliminated by attaching the building to the electric power grid and operating the power system with net metering. Utility permission is required, but such cooperative generation is legally mandated in some areas (for example, California).[9]
A grid-based building is less autonomous, but more economical and sustainable with fewer lifestyle sacrifices. In rural areas the grid's cost and impacts can be reduced by using single-wire earth return systems (for example, the MALT-system).
In areas that lack access to the grid, battery size can be reduced by including a generator to recharge the batteries during extended fogs or other low-power conditions. Auxiliary generators are usually run from propane, natural gas, or sometimes diesel. An hour of charging usually provides a day of operation. Modern residential chargers permit the user to set the charging times, so the generator is quiet at night. Some generators automatically test themselves once per week.[10][11]
Recent advances in passively stable magnetic bearings may someday permit inexpensive storage of power in a flywheel in a vacuum. Well-funded groups like Canada's Ballard Power Systems are also working to develop a "regenerative fuel cell", a device that can generate hydrogen and oxygen when power is available, and combine these efficiently when power is needed.
Earth batteries tap electric currents in the earth called telluric current. They can be installed anywhere in the ground. They provide only low voltages and current. They were used to power telegraphs in the 19th century. As appliance efficiencies increase, they may become practical.
Microbial fuel cells finally allow the generation of electricity from biomass. The plant can be chopped and converted as a whole, or it can be left alive so that waste saps from the plant can be converted by bacteria.
Heating
Passive solar heating can heat most buildings in even the coldest climates. In colder climates, extra construction costs can be as little as 15% more than new, conventional buildings. In warm climates, those having less than two weeks of frosty nights per year, there is no cost impact.
The basic requirement for passive solar heating is that the solar collectors must face the prevailing sunlight (south in the northern hemisphere, north in the southern hemisphere), and the building must incorporate thermal mass to keep it warm in the night.
A recent, somewhat experimental solar heating system "Annualized geo solar heating" is practical even in regions that get little or no sunlight in winter.[12] It uses the ground beneath a building for thermal mass. Precipitation can carry away the heat, so the ground is shielded with 6 m skirts of plastic insulation. The thermal mass of this system is sufficiently inexpensive and large that it can store enough summer heat to warm a building for the whole winter, and enough winter cold to cool the building in summer.
In annualized geo solar systems, the solar collector is often separate from (and hotter or colder than) the living space. The building may actually be constructed from insulation, for example, straw-bale construction. Some buildings have been aerodynamically designed so that convection via ducts and interior spaces eliminates any need for electric fans.
A more modest "daily solar" design is very practical. For example, for about a 15% premium in building costs, the Passivhaus building codes in Europe use high performance insulating windows, R-30 insulation, HRV ventilation, and a small thermal mass. With modest changes in the building's position, modern krypton- or argon-insulated windows permit normal-looking windows to provide passive solar heat without compromising insulation or structural strength. If a small heater is available for the coldest nights, a slab or basement cistern can inexpensively provide the required thermal mass. Passivhaus building codes in particular bring unusually good interior air quality, because the buildings change the air several times per hour, passing it though a heat exchanger to keep heat inside.
In all systems, a small supplementary heater increases personal security and reduces lifestyle impacts for a small reduction of autonomy. The two most popular heaters for ultra-high-efficiency houses are a small heat pump, which also provides air-conditioning, or a central hydronic (radiator) air heater with water recirculating from the water heater. Passivhaus designs usually integrate the heater with the ventilation system.
Earth sheltering and windbreaks can also reduce the absolute amount of heat needed by a building. Several feet below the earth, temperature ranges from 4 °C (39 °F) in North Dakota to 26 °C (79 °F),[12] in Southern Florida. Wind breaks reduce the amount of heat carried away from a building.
Rounded, aerodynamic buildings also lose less heat.
An increasing number of commercial buildings use a combined cycle with cogeneration to provide heating, often water heating, from the output of a natural gas reciprocating engine, gas turbine or stirling electric generator.[13]
Houses designed to cope with interruptions in civil services generally incorporate a wood stove, or heat and power from diesel fuel or bottled gas, regardless of their other heating mechanisms.
Electric heaters and electric stoves may provide pollution-free heat (depending on the power source), but use large amounts of electricity. If enough electricity is provided by solar panels, wind turbines, or other means, then electric heaters and stoves become a practical autonomous design.
Water heating
Further information: Solar hot water
Hot water heat recycling
units recover heat from water drain lines. They increase a building's
autonomy by decreasing the heat or fuel used to heat water. They are
attractive because they have no lifestyle changes.Current practical, comfortable domestic water-heating systems combine a solar preheating system with a thermostatic gas-powered flow-through heater, so that the temperature of the water is consistent, and the amount is unlimited. This reduces life-style impacts at some cost in autonomy.
Solar water heaters can save large amounts of fuel. Also, small changes in lifestyle, such as doing laundry, dishes and bathing on sunny days, can greatly increase their efficiency. Pure solar heaters are especially useful for laundries, swimming pools and external baths, because these can be scheduled for use on sunny days.
The basic trick in a solar water heating system is to use a well-insulated holding tank. Some systems are vacuum- insulated, acting something like large thermos bottles. The tank is filled with hot water on sunny days, and made available at all times. Unlike a conventional tank water heater, the tank is filled only when there is sunlight. Good storage makes a smaller, higher-technology collector feasible. Such collectors can use relatively exotic technologies, such as vacuum insulation, and reflective concentration of sunlight.
cogeneration systems produce hot water from waste heat. They usually get the heat from the exhaust of a generator or fuel cell.
Heat recycling, cogeneration and solar pre-heating can save 50-75% of the gas otherwise used. Also, some combinations provide redundant reliability by having several sources of heat. Some authorities advocate replacing bottled gas or natural gas with biogas. However, this is usually impractical unless live-stock are on-site. The wastes of a single family are usually insufficient to produce enough methane for anything more than small amounts of cooking.
Cooling
Annualized geo solar buildings often have buried, sloped water-tight skirts of insulation that extend 6 metres (20 ft) from the foundations, to prevent heat leakage between the earth used as thermal mass, and the surface.Less dramatic improvements are possible. Windows can be shaded in summer. Eaves can be overhung to provide the necessary shade. These also shade the walls of the house, reducing cooling costs.
Another trick is to cool the building's thermal mass at night, and then cool the building from the thermal mass during the day. It helps to be able to route cold air from a sky-facing radiator (perhaps an air heating solar collector with an alternate purpose) or evaporative cooler directly through the thermal mass. On clear nights, even in tropical areas, sky facing radiators can cool below freezing.
If a circular building is aerodynamically smooth, and cooler than the ground, it can be passively cooled by the "dome effect." Many installations have reported that a reflective or light colored dome induces a local vertical heat driven vortex that sucks cooler overhead air downward into a dome if the dome is vented properly (a single overhead vent, and peripheral vents). Some people have reported a temperature differential as high as 8 °C (15 °F) between the inside of the dome and the outside. Buckminster Fuller discovered this effect with a simple house design adapted from a grain silo, and adapted his Dymaxion house and geodesic domes to use it.
Refrigerators and air conditioners operating from the waste heat of a diesel engine exhaust, heater flue or solar collector are entering use. These use the same principles as a gas refrigerator. Normally, the heat from a flue powers an "absorptive chiller". The cold water or brine from the chiller is used to cool air or a refrigerated space.
Cogeneration is popular in new commercial buildings. In current cogeneration systems small gas turbines or stirling engines powered from natural gas produce electricity and their exhaust drives an absorptive chiller.
A truck trailer refrigerator operating from the waste heat of a tractor's diesel exhaust was demonstrated by NRG Solutions, Inc. NRG developed a hydronic ammonia gas heat exchanger and vaporizer, the two essential new, not commercially available components of a waste heat driven refrigerator.
A similar scheme (multiphase cooling) can be by a multistage evaporative cooler. The air is passed through a spray of salt solution to dehumidify it, then through a spray of water solution to cool it, then another salt solution to dehumidify it again. The brine has to be regenerated, and that can be done economically with a low temperature solar still. Multiphase evaporative coolers can lower the air's temperature by 50 °F (28 °C), and still control humidity. If the brine regenerator uses high heat, they also partially sterilise the air.
If enough electric power is available, cooling can be provided by conventional air conditioning using a heat pump.
Food production
Food production has often been included in historic autonomous projects to provide security.[14] Skilled, intensive gardening can support an adult from as little as 100 square meters of land per person,[15][16] possibly requiring the use of organic farming and aeroponics. Some proven intensive, low-effort food-production systems include urban gardening (indoors and outdoors). Indoor cultivation may be set up using hydroponics, while outdoor cultivation may be done using permaculture, forest gardening, no-till farming, and do nothing farming.Greenhouses are also sometimes included.[14][17] Sometimes they are also outfitted with irrigation systems or heat sink-systems which can respectively irrigate the plants or help to store energy from the sun and redistribute it at night (when the greenhouses starts to cool down).[14][18]
Microgeneration
From Wikipedia, the free encyclopedia
Part of a series about |
Sustainable energy |
---|
Energy conservation |
|
Renewable energy |
Sustainable transport |
Contents
Technologies and set-up
Microgeneration technologies include small-scale wind turbines, micro hydro, solar PV systems, microbial fuel cells, ground source heat pumps, and micro combined heat and power installations.[1]The power plant
In addition to the electricity production plant (e.g. wind turbine and solar panel), infrastructure for energy storage and power conversion and a hook-up to the regular electricity grid is usually needed and/or foreseen. Although a hookup to the regular electricity grid is not essential, it helps to decrease costs by allowing financial recompensation schemes. In the developing world however, the start-up cost for this equipment is generally too high, thus leaving no choice but to opt for alternative set-ups.[2]Extra equipment needed besides the power plant
Energy storage apparatus
A major issue with off-grid solar and wind systems is that the power is often needed when the sun is not shining or when the wind is calm, this is generally not required for purely grid-connected systems:- a series of deep cycle, stationary or sealed maintenance free batteries (the most common solution) [4]
- a charge controller for charging the batteries or other energy storage
- an inverter or grid-interactive inverter. The whole is also sometimes referred to as "power conditioning equipment"
Safety equipment
- groundings, transfer switches or isolator switches and surge protector. The whole is also sometimes referred to as "safety equipment"
- battery meters (for charging rate and voltage), and meters for power consumption and electricity provision to the regular power grid
Wind turbine specific
With wind turbines, hydroelectric plants, ... the extra equipment needed [8][9][10][11] is more or less the same as with PV-systems (depending on the type of wind turbine used,[12] yet also include:- a manual disconnect switch
- foundation for the tower
- grounding system
- shutoff and/or dummy-load devices for use in high wind when power generated exceeds current needs and storage system capacity.
Vibro-wind power
A new wind energy technology is being developed that converts energy from wind energy vibrations to electricity. This energy, called Vibro-Wind technology, can use winds of less strength than normal wind turbines, and can be placed in almost any location.A prototype consisted of a panel mounted with oscillators made out of pieces of foam. The conversion from mechanical to electrical energy is done using a piezoelectric transducer, a device made of a ceramic or polymer that emits electrons when stressed. The building of this prototype was led by Francis Moon, professor of mechanical and aerospace engineering at Cornell University. Moon's work in Vibro-Wind Technology was funded by the Atkinson Center for a Sustainable Future at Cornell.[13]
Possible set-ups
Several microgeneration set-ups are possible. These are:- Off-the-grid set-ups which include:
- Off-the grid set-ups without energy storage (e.g., battery, ...)
- Off-the grid set-ups with energy storage (e.g., battery, ...)
- Battery charging stations [14]
- Grid-connected set-ups which include:
- Grid connected with backup to power critical loads
- Grid-connected set-ups without financial recompensation scheme
- Grid-connected set-ups with net metering
- Grid connected set-ups with net purchase and sale [15]
Costs
Depending on the set-up chosen (financial recompensation scheme, power plant, extra equipment), prices may vary. According to Practical Action, microgeneration at home which uses the latest in cost saving-technology (wiring harnesses, ready boards, cheap DIY-power plants, e.g. DIY wind turbines) the household expenditure can be extremely low-cost. In fact, Practical Action mentions that many households in farming communities in the developing world spend less than $1 for electricity per month. .[16] However, if matters are handled less economically (using more commercial systems/approaches), costs will be dramatically higher. In most cases however, financial advantage will still be done using microgeneration on renewable power plants; often in the range of 50-90% [17] as local production has no electricity transportation losses on long distance power lines or energy losses from the Joule effect in transformers where in general 8-15% of the energy is lost.[18]In the UK, the government offers both grants and feedback payments to help businesses, communities and private homes to install these technologies. Businesses can write the full cost of installation off against taxable profits whilst homeowners receive a flat rate grant or payments per kW h of electricity generated and paid back into the national grid. Community organisations can also receive up to £200,000 in grant funding.[19]
In the UK, the Microgeneration Certification Scheme provides approval for Microgeneration Installers and Products which is a mandatory requirement of funding schemes such as the Feed in Tariffs and Renewable Heat Incentive.
Grid parity
Grid parity (or socket parity) occurs when an alternative energy source can generate electricity at a levelized cost (LCoE) that is less than or equal to the price of purchasing power from the electricity grid. Reaching grid parity is considered to be the point at which an energy source becomes a contender for widespread development without subsidies or government support. It is widely believed that a wholesale shift in generation to these forms of energy will take place when they reach grid parity.Grid parity has been reached in some locations with on-shore wind power around 2000, and with solar power it was achieved for the first time in Spain in 2013.[20][21][22]
Microgeneration can dynamically balance the supply and demand for electric power, by producing more power during periods of high demand and high grid prices, and less power during periods of low demand and low grid prices. This "hybridized grid" allows both microgeneration systems and large power plants to operate with greater energy efficiency and cost effectiveness than either could alone.
Domestic self-sufficiency
Further information: Autonomous building
See also: Earthship and Off-the-grid
Passive solar water heating is another effective method of utilizing solar power. The simplest method is the solar (or a black plastic) bag. Set between 1 and 5 gallons out in the sun and allow to heat. Perfect for a quick warm shower.[26]
The ‘breadbox’ heater can be constructed easily with recycled materials and basic building experience. Consisting of a single or array of black tanks mounted inside a sturdy box insulated on the bottom and sides. The lid, either horizontal or angled to catch the most sun, should be well sealed and of a transparent glazing material (glass, fiberglass, or high temp resistant molded plastic). Cold water enters the tank near the bottom, heats and rises to the top where it is piped back into the home.[26]
Ground source heat pumps exploit stable ground temperatures by benefiting from the thermal energy storage capacity of the ground. Typically ground source heat pumps have a high initial cost and are difficult to install by the average homeowner. They use electric motors to transfer heat from the ground with a high level of efficiency. The electricity may come from renewable sources or from external non-renewable sources.
Fuel
Biodiesel is an alternative fuel that can power diesel engines and can be used for domestic heating. Numerous forms of biomass, including soybeans, peanuts, and algae (which has the highest yield), can be used to make biodiesel. Recycled vegetable oil (from restaurants) can also be converted into biodiesel.Biogas is another alternative fuel, created from the waste product of animals. Though less practical for most homes, a farm environment provides a perfect place to implement the process. By mixing the waste and water in a tank with space left for air, methane produces naturally in the airspace. This methane can be piped out and burned, and used for a cookfire.
The biogaspro digester provides an easily installed digester suitable for small farms or even large homes. Groups of homes can possible group together to use a digester [27]
Government policy
Policymakers were accustomed to an energy system based on big, centralised projects like nuclear or gas-fired power stations. A change of mindsets and incentives are bringing microgeneration into the mainstream. Planning regulations may also require streamlining to facilitate the retrofitting of microgenerating facilities onto homes and buildings.Most of developed countries, including Canada (Alberta), the United Kingdom, Germany, Poland, Israel[28] and USA have laws allowing microgenerated electricity to be sold into the national grid.
Alberta, Canada
In January 2009, the Government of Alberta‘s Micro-Generation Regulation came into effect, setting rules that allow Albertans to generate their own environmentally friendly electricity and receive credit for any power they send into the electricity grid.Poland
In December 2014, the Polish government will vote on a bill which calls for microgeneration, as well as large scale wind farms in the Baltic Sea as a solution to cut back on co2 emissions from the country's coal plants as well as to reduce Polish dependence on Russian gas. Under the terms of the new bill, individuals and small businesses which generate up to 40 kW of 'green' energy will receive 100% of market price for any electricity they feed back into the grid, and businesses who set up large-scale offshore wind farms in the Baltic will be eligible for subsidization by the state. Costs of implementing these new policies will be offset by the creation of a new tax on non-sustainable energy use. [29]United States
The United States has inconsistent energy generation policies across its 50 states. State energy policies and laws may vary significantly with location. Some states have imposed requirements on utilities that a certain percentage of total power generation be from renewable sources. For this purpose, renewable sources include wind, hydroelectric, and solar power whether from large or microgeneration projects. Further, in some areas transferrable "renewable source energy" credits are needed by power companies to meet these mandates. As a result, in some portions of the United States, power companies will pay a portion of the cost of renewable source microgeneration projects in their service areas. These rebates are in addition to any Federal or State renewable-energy income-tax credits that may be applicable. In other areas, such rebates may differ or may not be available.United Kingdom
The UK Government published its Microgeneration Strategy[30] in March 2006, although it was seen as a disappointment by many commentators.[31] In contrast, the Climate Change and Sustainable Energy Act 2006 has been viewed as a positive step.[32] To replace earlier schemes, the Department of Trade and Industry (DTI) launched the Low Carbon Buildings Programme in April 2006, which provided grants to individuals, communities and businesses wishing to invest in microgenerating technologies. These schemes have been replaced in turn by new proposals from the Department for Energy and Climate Change (DECC) for clean energy cashback via Feed-In Tariffs [33] for generating electricity from April 2010 and the Renewable Heat Incentive [34] for generating renewable heat from 28 November 2011.Feed-In Tariffs are intended to incentivise small-scale (less than 5MW), low-carbon electricity generation. These feed-in tariffs work alongside the Renewables Obligation (RO), which will remain the primary mechanism to incentivise deployment of large-scale renewable electricity generation. The Renewable Heat Incentive (RHI) in intended to incentivise the generation of heat from renewable sources. They also currently offer up to 21p per kWh from December 2011 in the Tariff for photovoltaics plus another 3p for the Export Tariff - an overall figure which could see a household earning back double what they currently pay for their electricity.[35]
On 31 October 2011, the government announced a sudden cut in the feed-in tariff from 43.3p/kWh to 21p/kWh with the new tariff to apply to all new solar PV installations with an eligibility date on or after 12 December 2011.[36]
Prominent British politicians who have announced they are fitting microgenerating facilities to their homes include the Conservative party leader, David Cameron, and the Labour Science Minister, Malcolm Wicks. These plans included small domestic sized wind turbines. Cameron, before becoming Prime Minister in the 2010 general elections, had been asked during an interview on BBC One’s The Politics Show on October 29, 2006, if he would do the same should he get to 10 Downing Street. “If they’d let me, yes,” he replied.[37]
In the December 2006 Pre-Budget Report[38] the government announced that the sale of surplus electricity from installations designed for personal use, would not be subject to Income Tax. Legislation to this effect has been included in the Finance Bill 2007.[39]
In popular culture
Microgeneration has been popularised by several movies, TV-shows, and magazines. Movies such as The Mosquito Coast, Jericho, The Time Machine, and Beverly Hills Family Robinson have done a great deal in raising interest to the general public. More specialised magazines such as OtherPower and Home Power give more practical advice and guidance.[40] Websites such as Instructables and Practical Action are increasing the popularity of microgeneration by proposing DIY-solutions which can decrease the cost of microgeneration.Solar air conditioning
Solar air conditioning refers to any air conditioning (cooling) system that uses solar power.
This can be done through passive solar, solar thermal energy conversion and photovoltaic conversion (sunlight to electricity). The U.S. Energy Independence and Security Act of 2007[1] created 2008 through 2012 funding for a new solar air conditioning research and development program, which should develop and demonstrate multiple new technology innovations and mass production economies of scale. Solar air conditioning might play an increasing role in zero-energy and energy-plus buildings design.[who?]
This can be done through passive solar, solar thermal energy conversion and photovoltaic conversion (sunlight to electricity). The U.S. Energy Independence and Security Act of 2007[1] created 2008 through 2012 funding for a new solar air conditioning research and development program, which should develop and demonstrate multiple new technology innovations and mass production economies of scale. Solar air conditioning might play an increasing role in zero-energy and energy-plus buildings design.[who?]
Contents
History
In the late 19th century, the most common fluid for absorption cooling was a solution of ammonia and water. Today, the combination of lithium bromide and water is also in common use. One end of the system of expansion/condensation pipes is heated, and the other end gets cold enough to make ice. Originally, natural gas was used as a heat source in the late 19th century. Today, propane is used in recreational vehicle absorption chiller refrigerators. Hot water solar thermal energy collectors can also be used as the modern "free energy" heat source.Photovoltaic (PV) solar cooling
Main article: Photovoltaic electricity
Photovoltaics can provide the power for any type of electrically powered cooling be it conventional
compressor-based or adsorption/absorption-based, though the most common
implementation is with compressors. For small residential and small
commercial cooling (less than 5 MWh/a)
PV-powered cooling has been the most frequently implemented solar
cooling technology. The reason for this is debated, but commonly
suggested reasons include incentive structuring, lack of
residential-sized equipment for other solar-cooling technologies, the
advent of more efficient electrical coolers, or ease of installation
compared to other solar-cooling technologies (like radiant cooling).Since PV cooling's cost effectiveness depends largely on the cooling equipment and given the poor efficiencies in electrical cooling methods until recently it has not been cost effective without subsidies. Using more efficient electrical cooling methods and allowing longer payback schedules is changing that scenario.
For example, a 100,000 BTU U.S. Energy Star rated[note 1] air conditioner with a high seasonal energy efficiency ratio (SEER) of 14 requires around 7 kW of electric power for full cooling output on a hot day. This would require over a 20 kW solar photovoltaic electricity generation system with storage.
A solar-tracking 7 kW photovoltaic system would probably have an installed price well over $20,000 USD (with PV equipment prices currently falling at roughly 17% per year). Infrastructure, wiring, mounting, and NEC code costs may add up to an additional cost; for instance a 3120 watt solar panel grid tie system has a panel cost of $0.99/watt peak, but still costs ~$2.2/watt hour peak. Other systems of different capacity cost even more, let alone battery backup systems, which cost even more.
A more efficient air conditioning system would require a smaller, less-expensive photovoltaic system. A high-quality geothermal heat pump installation can have a SEER in the range of 20 (±). A 100,000 BTU SEER 20 air conditioner would require less than 5 kW while operating.
Newer and lower power technology including reverse inverter DC heat pumps can achieve SEER ratings up to 26.
There are new non-compressor-based electrical air conditioning systems with a SEER above 20 coming on the market. New versions of phase-change indirect evaporative coolers use nothing but a fan and a supply of water to cool buildings without adding extra interior humidity (such as at McCarran Airport Las Vegas Nevada). In dry arid climates with relative humidity below 45% (about 40% of the continental U.S.) indirect evaporative coolers can achieve a SEER above 20, and up to SEER 40. A 100,000 BTU indirect evaporative cooler would only need enough photovoltaic power for the circulation fan (plus a water supply).
A less-expensive partial-power photovoltaic system can reduce (but not eliminate) the monthly amount of electricity purchased from the power grid for air conditioning (and other uses). With American state government subsidies of $2.50 to $5.00 USD per photovoltaic watt,[2] the amortized cost of PV-generated electricity can be below $0.15 per kWh. This is currently cost effective in some areas where power company electricity is now $0.15 or more. Excess PV power generated when air conditioning is not required can be sold to the power grid in many locations, which can reduce (or eliminate) annual net electricity purchase requirement. (See Zero-energy building)
Superior energy efficiency can be designed into new construction (or retrofitted to existing buildings). Since the U.S. Department of Energy was created in 1977, their Weatherization Assistance Program[3] has reduced heating-and-cooling load on 5.5 million low-income affordable homes an average of 31%. A hundred million American buildings still need improved weatherization. Careless conventional construction practices are still producing inefficient new buildings that need weatherization when they are first occupied.
It is fairly simple to reduce the heating-and-cooling requirement for new construction by one half. This can often be done at no additional net cost, since there are cost savings for smaller air conditioning systems and other benefits.
Geothermal cooling
Earth sheltering or Earth cooling tubes can take advantage of the ambient temperature of the Earth to reduce or eliminate conventional air conditioning requirements. In many climates where the majority of humans live, they can greatly reduce the buildup of undesirable summer heat, and also help remove heat from the interior of the building. They increase construction cost, but reduce or eliminate the cost of conventional air conditioning equipment.Earth cooling tubes are not cost effective in hot humid tropical environments where the ambient Earth temperature approaches human temperature comfort zone. A solar chimney or photovoltaic-powered fan can be used to exhaust undesired heat and draw in cooler, dehumidified air that has passed by ambient Earth temperature surfaces. Control of humidity and condensation are important design issues.
A geothermal heat pump uses ambient Earth temperature to improve SEER for heat and cooling. A deep well recirculates water to extract ambient Earth temperature (typically at 2 gallons of water per ton per minute). These "open loop" systems were the most common in early systems, however water quality could cause damage to the coils in the heat pump and shorten the life of the equipment. Another method is a closed loop system, in which a loop of tubing is run down a well or wells, or in trenches in the lawn, to cool an intermediate fluid. When wells are used, they are back-filled with Bentonite or another grout material to ensure good thermal conductivity to the earth.
In the past the fluid of choice was a 50/50 mixture of propylene glycol because it is non-toxic unlike ethylene glycol (which is used in car radiators). Propylene glycol is viscous, and would eventually gum up some parts in the loop(s), so it has fallen out of favor. Today, the most common transfer agent is a mixture of water and ethyl alcohol (ethanol).
Ambient earth temperature is much lower than peak summer air temperature, and much higher than the lowest extreme winter air temperature. Water is 25 times more thermally conductive than air, so it is much more efficient than an outside air heat pump, (which becomes less effective when the outside temperature drops in Winter).
The same type of geothermal well can be used without a heat pump but with greatly diminished results. Ambient Earth temperature water is pumped through a shrouded radiator (like an automobile radiator). Air is blown across the radiator, which cools without a compressor-based air conditioner. Photovoltaic solar electric panels produce electricity for the water pump and fan, eliminating conventional air-conditioning utility bills. This concept is cost-effective, as long as the location has ambient Earth temperature below the human thermal comfort zone (not the tropics).
Solar open-loop Air Conditioning using desiccants
Air can be passed over common, solid desiccants (like silica gel or zeolite) or liquid desiccants (like lithium bromide/chloride) to draw moisture from the air to allow an efficient mechanical or evaporative cooling cycle. The desiccant is then regenerated by using solar thermal energy to dehumidfy, in a cost-effective, low-energy-consumption, continuously repeating cycle.[4] A photovoltaic system can power a low-energy air circulation fan, and a motor to slowly rotate a large disk filled with desiccant.Energy recovery ventilation systems provide a controlled way of ventilating a home while minimizing energy loss. Air is passed through an "enthalpy wheel" (often using silica gel) to reduce the cost of heating ventilated air in the winter by transferring heat from the warm inside air being exhausted to the fresh (but cold) supply air. In the summer, the inside air cools the warmer incoming supply air to reduce ventilation cooling costs.[5] This low-energy fan-and-motor ventilation system can be cost-effectively powered by photovoltaics, with enhanced natural convection exhaust up a solar chimney - the downward incoming air flow would be forced convection (advection).
A desiccant like calcium chloride can be mixed with water to create an attractive recirculating waterfall, that dehumidifies a room using solar thermal energy to regenerate the liquid, and a PV-powered low-rate water pump[6]
Active solar cooling wherein solar thermal collectors provide input energy for a desiccant cooling system. There are several commercially available systems that blow air through a desiccant impregnated medium for both the dehumidification and the regeneration cycle. The solar heat is one way that the regeneration cycle is powered. In theory packed towers can be used to form a counter-current flow of the air and the liquid desiccant but are not normally employed in commercially available machines. Preheating of the air is shown to greatly enhance desiccant regeneration. The packed column yields good results as a dehumidifier/regenerator, provided pressure drop can be reduced with the use of suitable packing.[7]
Passive solar cooling
Main articles: Passive cooling and Passive solar
In this type of cooling solar thermal energy is not used directly to
create a cold environment or drive any direct cooling processes.
Instead, solar building design aims at slowing the rate of heat transfer
into a building in the summer, and improving the removal of unwanted
heat. It involves a good understanding of the mechanisms of heat transfer: heat conduction, convective heat transfer, and thermal radiation, the latter primarily from the sun.For example, a sign of poor thermal design is an attic that gets hotter in summer than the peak outside air temperature. This can be significantly reduced or eliminated with a cool roof or a green roof, which can reduce the roof surface temperature by 70 °F (40 °C) in summer. A radiant barrier and an air gap below the roof will block about 97% of downward radiation from roof cladding heated by the sun.
Passive solar cooling is much easier to achieve in new construction than by adapting existing buildings. There are many design specifics involved in passive solar cooling. It is a primary element of designing a zero energy building in a hot climate.
Solar closed-loop absorption cooling
Main article: Absorption heat pump
The following are common technologies in use for solar thermal closed-loop air conditioning.- Absorption: NH
3/H
2O or Ammonia/Water - Absorption: Water/Lithium Bromide
- Absorption: Water/Lithium Chloride
- Adsorption: Water/Silica Gel or Water/Zeolite
- Adsorption: Methanol/Activated Carbon[8]
Solar thermal energy can be used to efficiently cool in the summer, and also heat domestic hot water and buildings in the winter. Single, double or triple iterative absorption cooling cycles are used in different solar-thermal-cooling system designs. The more cycles, the more efficient they are. Absorption chillers operate with less noise and vibration than compressor-based chillers, but their capital costs are relatively high.[10]
Efficient absorption chillers nominally require water of at least 190 °F (88 °C). Common, inexpensive flat-plate solar thermal collectors only produce about 160 °F (71 °C) water. High temperature flat plate, concentrating or evacuated tube collectors are needed to produce the higher temperature water required. In large scale installations there are several projects successful both technical and economical in operation worldwide including, for example, at the headquarters of Caixa Geral de Depósitos in Lisbon with 1,579 square metres (17,000 sq ft) solar collectors and 545 kW cooling power or on the Olympic Sailing Village in Qingdao/China. In 2011 the most powerful plant at Singapore's new constructed United World College will be commissioned (1500 kW).
These projects have shown that flat plate solar collectors specially developed for temperatures over 200 °F (93 °C) (featuring double glazing, increased backside insulation, etc.) can be effective and cost efficient.[11] Where water can be heated well above 190 °F (88 °C), it can be stored and used when the sun is not shining.
The Audubon Environmental Center at the Ernest E. Debs Regional Park in Los Angeles has an example solar air conditioning installation,[12][13] which failed fairly soon after commissioning and is no longer being maintained.[citation needed] The Southern California Gas Co. (The Gas Company) is also testing the practicality of solar thermal cooling systems at their Energy Resource Center (ERC) in Downey, California. Solar Collectors from Sopogy and Cogenra were installed on the rooftop at the ERC and are producing cooling for the building’s air conditioning system.[14] Masdar City in the United Arab Emirates is also testing a double-effect absorption cooling plant using Sopogy parabolic trough collectors,[15] Mirroxx Fresnel array and TVP Solar high-vacuum solar thermal panels.[16]
For 150 years, absorption chillers have been used to make ice (before the electric light bulbs were invented).[17] This ice can be stored and used as an "ice battery" for cooling when the sun is not shining, as it was in the 1995 Hotel New Otani Tokyo in Japan.[18] Mathematical models are available in the public domain for ice-based thermal energy storage performance calculations.[19]
The ISAAC Solar Icemaker is an intermittent solar ammonia-water absorption cycle. The ISAAC uses a parabolic trough solar collector and a compact and efficient design to produce ice with no fuel or electric input, and with no moving parts.[20]
Providers of solar cooling systems include ChillSolar,[21] SOLID,[22] Sopogy,[23] Cogenra,[24] Mirroxx [25] and TVP Solar [26] for commercial installations and ClimateWell,[27] Fagor-Rotartica, SorTech and Daikin mostly for residential systems. Cogenra uses solar co-generation to produce both thermal and electric energy that can be used for cooling.[28]
Zero-energy buildings
Goals of zero-energy buildings include sustainable, green building technologies that can significantly reduce, or eliminate, net annual energy bills. The supreme achievement is the totally off-the-grid autonomous building that does not have to be connected to utility companies. In hot climates with significant degree days of cooling requirement, leading-edge solar air conditioning will be an increasingly important critical success factor.Solar-powered refrigerator
From Wikipedia, the free encyclopedia
(Redirected from Solar powered refrigerator)
This
article is about sealed gas-exchange refrigerators which use solar
power. For evaporative devices which use ambient heat, see pot-in-pot refrigerator.
A solar-powered refrigerator is a refrigerator which runs on energy directly provided by sun, and may include photovoltaic or solar thermal energy.Solar-powered refrigerators are able to keep perishable goods such as meat and dairy cool in hot climates, and are used to keep much needed vaccines at their appropriate temperature to avoid spoilage.
Solar-powered refrigerators may be most commonly used in the developing world to help mitigate poverty and climate change.
Contents
Rationale
There is environmental concern regarding conventional refrigeration technologies including contribution to ozone layer depletion and global warming. Refrigerators which contain ozone depleting and global warming substances such as chlorofluorocarbons (CFCs), in their insulation foam or their refrigerant cycle, are the most harmful. After CFCs were banned in the 1980s, they were replaced with substances such as hydrochlorofluorocarbons (HCFCs), which are ozone-depleting substances and hydrofluorocarbons (HFCs). Both are environmentally destructive as potential global warming chemicals. If a conventional refrigerator is inefficient or used inefficiently, it will also contribute more to global warming than a highly efficient refrigerator. The use of solar energy to power refrigeration strives to minimize the negative impacts refrigerators have on the environment.[1][2]History
In 1878, at the Universal Exhibition in Paris, Augustin Mouchot displayed Mouchot's engine and won a Gold Medal in Class 54 for his works, most notably the production of ice using concentrated solar heat."In developed countries, plug-in refrigerators with backup generators store vaccines safely, but in developing countries, where electricity supplies can be unreliable, alternative refrigeration technologies are required".[3] Solar fridges were introduced in the developing world to cut down on the use of kerosene or gas-powered absorption refrigerated coolers which are the most common alternatives. They are used for both vaccine storage and household applications in areas without reliable electrical supply because they have poor or no grid electricity at all.[2][4] They burn a liter of kerosene per day therefore requiring a constant supply of fuel which is costly and smelly, and are responsible for the production of large amounts of carbon dioxide.[3] They can also be difficult to adjust which can result in the freezing of medicine. The use of Kerosene as a fuel is now widely discouraged for three reasons: Recurrent cost of fuel, difficulty of maintaining accurate temperature and risk of causing fires.[4]
Technology
Traditionally solar-powered refrigerators and vaccine coolers use a combination of solar panels and lead batteries to store energy for cloudy days and at night in the absence of sunlight to keep their contents cool. These fridges are expensive and require heavy lead-acid batteries which tend to deteriorate, especially in hot climates, or are misused for other purposes.[3][4] In addition, the batteries require maintenance,[5] must be replaced approximately every three years, and must be disposed of as hazardous wastes possibly resulting in lead pollution.[3] These problems and the resulting higher costs have been an obstacle for the use of solar powered refrigerators in developing areas.[2][4]In the mid-1990s NASA JSC began work on a solar powered refrigerator that used phase change material rather than battery to store "thermal energy" rather than "chemical energy." The resulting technology has been commercialized and is being used for storing food products and vaccines.
Use
Solar-powered refrigerators and other solar appliances are commonly used by individuals living off-the-grid. They provide a means for keeping food safe and preserved while avoiding a connection to utility-provided power. Solar refrigerators are also used in cottages and camps as an alternative to absorption refrigerators, as they can be safely left running year-round. Other uses include being used to keep medical supplies at proper temperatures in remote locations, and being used to temporarily store game at hunting camps. [6]Passive solar building design
From Wikipedia, the free encyclopedia
Part of a series about |
Sustainable energy |
---|
Energy conservation |
Renewable energy |
Sustainable transport |
The key to design a passive solar building is to best take advantage of the local climate performing an accurate site analysis. Elements to be considered include window placement and size, and glazing type, thermal insulation, thermal mass, and shading.[2] Passive solar design techniques can be applied most easily to new buildings, but existing buildings can be adapted or "retrofitted".
Contents
- 1 Passive energy gain
- 2 As a science
- 3 The solar path in passive design
- 4 Passive solar heat transfer principles
- 5 Site specific considerations during design
- 6 Design elements for residential buildings in temperate climates
- 7 Efficiency and economics of passive solar heating
- 8 Key passive solar building design concepts
- 9 Landscaping and gardens
- 10 Other passive solar principles
- 11 Comparison to the Passive House standard in Europe
- 12 Design tools
- 13 Levels of application
- 14 See also
- 15 References
- 16 External links
Passive energy gain
Some passive systems use a small amount of conventional energy to control dampers, shutters, night insulation, and other devices that enhance solar energy collection, storage, and use, and reduce undesirable heat transfer.
Passive solar technologies include direct and indirect solar gain for space heating, solar water heating systems based on the thermosiphon, use of thermal mass and phase-change materials for slowing indoor air temperature swings, solar cookers, the solar chimney for enhancing natural ventilation, and earth sheltering.
More widely, passive solar technologies include the solar furnace and solar forge, but these typically require some external energy for aligning their concentrating mirrors or receivers, and historically have not proven to be practical or cost effective for widespread use. 'Low-grade' energy needs, such as space and water heating, have proven, over time, to be better applications for passive use of solar energy.
As a science
The scientific basis for passive solar building design has been developed from a combination of climatology, thermodynamics (particularly heat transfer: conduction (heat), convection, and electromagnetic radiation), fluid mechanics/natural convection (passive movement of air and water without the use of electricity, fans or pumps), and human thermal comfort based on heat index, psychrometrics and enthalpy control for buildings to be inhabited by humans or animals, sunrooms, solariums, and greenhouses for raising plants.Specific attention is divided into: the site, location and solar orientation of the building, local sun path, the prevailing level of insolation (latitude/sunshine/clouds/precipitation), design and construction quality/materials, placement/size/type of windows and walls, and incorporation of solar-energy-storing thermal mass with heat capacity.
While these considerations may be directed toward any building, achieving an ideal optimized cost/performance solution requires careful, holistic, system integration engineering of these scientific principles. Modern refinements through computer modeling (such as the comprehensive U.S. Department of Energy "Energy Plus"[3] building energy simulation software), and application of decades of lessons learned (since the 1970s energy crisis) can achieve significant energy savings and reduction of environmental damage, without sacrificing functionality or aesthetics.[4] In fact, passive-solar design features such as a greenhouse/sunroom/solarium can greatly enhance the livability, daylight, views, and value of a home, at a low cost per unit of space.
Much has been learned about passive solar building design since the 1970s energy crisis. Many unscientific, intuition-based expensive construction experiments have attempted and failed to achieve zero energy - the total elimination of heating-and-cooling energy bills.
Passive solar building construction may not be difficult or expensive (using off-the-shelf existing materials and technology), but the scientific passive solar building design is a non-trivial engineering effort that requires significant study of previous counter-intuitive lessons learned, and time to enter, evaluate, and iteratively refine the simulation input and output.
One of the most useful post-construction evaluation tools has been the use of thermography using digital thermal imaging cameras for a formal quantitative scientific energy audit. Thermal imaging can be used to document areas of poor thermal performance such as the negative thermal impact of roof-angled glass or a skylight on a cold winter night or hot summer day.
The scientific lessons learned over the last three decades have been captured in sophisticated comprehensive building energy simulation computer software systems (like U.S. DOE Energy Plus, et al.).
Scientific passive solar building design with quantitative cost benefit product optimization is not easy for a novice. The level of complexity has resulted in ongoing bad-architecture, and many intuition-based, unscientific construction experiments that disappoint their designers and waste a significant portion of their construction budget on inappropriate ideas.[citation needed]
The economic motivation for scientific design and engineering is significant. If it had been applied comprehensively to new building construction beginning in 1980 (based on 1970s lessons learned), America could be saving over $250,000,000 per year on expensive energy and related pollution today.[citation needed]
Since 1979, Passive Solar Building Design has been a critical element of achieving zero energy by educational institution experiments, and governments around the world, including the U.S. Department of Energy, and the energy research scientists that they have supported for decades. The cost effective proof of concept was established decades ago, but cultural assimilation into architecture, construction trades, and building-owner decision making has been very slow and difficult to change.[citation needed]
The new terms "Architectural Science" and "Architectural Technology" are being added to some schools of Architecture, with a future goal of teaching the above scientific and energy-engineering principles.[citation needed]
The solar path in passive design
Main articles: Sun path and Position of the Sun
The ability to achieve these goals simultaneously is fundamentally
dependent on the seasonal variations in the sun's path throughout the
day.This occurs as a result of the inclination of the Earth's axis of rotation in relation to its orbit. The sun path is unique for any given latitude.
In Northern Hemisphere non-tropical latitudes farther than 23.5 degrees from the equator:
- The sun will reach its highest point toward the south (in the direction of the equator)
- As winter solstice approaches, the angle at which the sun rises and sets progressively moves further toward the South and the daylight hours will become shorter
- The opposite is noted in summer where the sun will rise and set further toward the North and the daylight hours will lengthen[5]
In equatorial regions at less than 23.5 degrees, the position of the sun at solar noon will oscillate from north to south and back again during the year.[6]
In regions closer than 23.5 degrees from either north-or-south pole, during summer the sun will trace a complete circle in the sky without setting whilst it will never appear above the horizon six months later, during the height of winter.[7]
The 47-degree difference in the altitude of the sun at solar noon between winter and summer forms the basis of passive solar design. This information is combined with local climatic data (degree day) heating and cooling requirements to determine at what time of the year solar gain will be beneficial for thermal comfort, and when it should be blocked with shading. By strategic placement of items such as glazing and shading devices, the percent of solar gain entering a building can be controlled throughout the year.
One passive solar sun path design problem is that although the sun is in the same relative position six weeks before, and six weeks after, the solstice, due to "thermal lag" from the thermal mass of the Earth, the temperature and solar gain requirements are quite different before and after the summer or winter solstice. Movable shutters, shades, shade screens, or window quilts can accommodate day-to-day and hour-to-hour solar gain and insulation requirements.
Careful arrangement of rooms completes the passive solar design. A common recommendation for residential dwellings is to place living areas facing solar noon and sleeping quarters on the opposite side.[8] A heliodon is a traditional movable light device used by architects and designers to help model sun path effects. In modern times, 3D computer graphics can visually simulate this data, and calculate performance predictions.[4]
Passive solar heat transfer principles
Personal thermal comfort is a function of personal health factors (medical, psychological, sociological and situational), ambient air temperature, mean radiant temperature, air movement (wind chill, turbulence) and relative humidity (affecting human evaporative cooling). Heat transfer in buildings occurs through convection, conduction, and thermal radiation through roof, walls, floor and windows.[9]Convective heat transfer
Convective heat transfer can be beneficial or detrimental. Uncontrolled air infiltration from poor weatherization / weatherstripping / draft-proofing can contribute up to 40% of heat loss during winter;[10] however, strategic placement of operable windows or vents can enhance convection, cross-ventilation, and summer cooling when the outside air is of a comfortable temperature and relative humidity.[11] Filtered energy recovery ventilation systems may be useful to eliminate undesirable humidity, dust, pollen, and microorganisms in unfiltered ventilation air.Natural convection causing rising warm air and falling cooler air can result in an uneven stratification of heat. This may cause uncomfortable variations in temperature in the upper and lower conditioned space, serve as a method of venting hot air, or be designed in as a natural-convection air-flow loop for passive solar heat distribution and temperature equalization. Natural human cooling by perspiration and evaporation may be facilitated through natural or forced convective air movement by fans, but ceiling fans can disturb the stratified insulating air layers at the top of a room, and accelerate heat transfer from a hot attic, or through nearby windows. In addition, high relative humidity inhibits evaporative cooling by humans.
Radiative heat transfer
The main source of heat transfer is radiant energy, and the primary source is the sun. Solar radiation occurs predominantly through the roof and windows (but also through walls). Thermal radiation moves from a warmer surface to a cooler one. Roofs receive the majority of the solar radiation delivered to a house. A cool roof, or green roof in addition to a radiant barrier can help prevent your attic from becoming hotter than the peak summer outdoor air temperature[12] (see albedo, absorptivity, emissivity, and reflectivity).Windows are a ready and predictable site for thermal radiation.[13] Energy from radiation can move into a window in the day time, and out of the same window at night. Radiation uses photons to transmit electromagnetic waves through a vacuum, or translucent medium. Solar heat gain can be significant even on cold clear days. Solar heat gain through windows can be reduced by insulated glazing, shading, and orientation. Windows are particularly difficult to insulate compared to roof and walls. Convective heat transfer through and around window coverings also degrade its insulation properties.[13] When shading windows, external shading is more effective at reducing heat gain than internal window coverings.[13]
Western and eastern sun can provide warmth and lighting, but are vulnerable to overheating in summer if not shaded. In contrast, the low midday sun readily admits light and warmth during the winter, but can be easily shaded with appropriate length overhangs or angled louvres during summer and leaf bearing summer shade trees which shed their leaves in the fall. The amount of radiant heat received is related to the location latitude, altitude, cloud cover, and seasonal / hourly angle of incidence (see Sun path and Lambert's cosine law).
Another passive solar design principle is that thermal energy can be stored in certain building materials and released again when heat gain eases to stabilize diurnal (day/night) temperature variations. The complex interaction of thermodynamic principles can be counterintuitive for first-time designers. Precise computer modeling can help avoid costly construction experiments.
Site specific considerations during design
- Latitude, sun path, and insolation (sunshine)
- Seasonal variations in solar gain e.g. cooling or heating degree days, solar insolation, humidity
- Diurnal variations in temperature
- Micro-climate details related to breezes, humidity, vegetation and land contour
- Obstructions / Over-shadowing - to solar gain or local cross-winds
Design elements for residential buildings in temperate climates
- Placement of room-types, internal doors and walls, and equipment in the house.
- Orienting the building to face the equator (or a few degrees to the East to capture the morning sun)[8]
- Extending the building dimension along the east/west axis
- Adequately sizing windows to face the midday sun in the winter, and be shaded in the summer.
- Minimising windows on other sides, especially western windows[13]
- Erecting correctly sized, latitude-specific roof overhangs,[14] or shading elements (shrubbery, trees, trellises, fences, shutters, etc.)[15]
- Using the appropriate amount and type of insulation including radiant barriers and bulk insulation to minimise seasonal excessive heat gain or loss
- Using thermal mass to store excess solar energy during the winter day (which is then re-radiated during the night)[16]
Factors that can degrade thermal performance:
- Deviation from ideal orientation and north/south/east/west aspect ratio
- Excessive glass area ("over-glazing") resulting in overheating (also resulting in glare and fading of soft furnishings) and heat loss when ambient air temperatures fall
- Installing glazing where solar gain during the day and thermal losses during the night cannot be controlled easily e.g. West-facing, angled glazing, skylights[17]
- Thermal losses through non-insulated or unprotected glazing
- Lack of adequate shading during seasonal periods of high solar gain (especially on the West wall)
- Incorrect application of thermal mass to modulate daily temperature variations
- Open staircases leading to unequal distribution of warm air between upper and lower floors as warm air rises
- High building surface area to volume - Too many corners
- Inadequate weatherization leading to high air infiltration
- Lack of, or incorrectly installed, radiant barriers during the hot season. (See also cool roof and green roof)
- Insulation materials that are not matched to the main mode of heat transfer (e.g. undesirable convective/conductive/radiant heat transfer)
Efficiency and economics of passive solar heating
Passive solar fraction (PSF) is the percentage of the required heat load met by PSH and hence represents potential reduction in heating costs. RETScreen International has reported a PSF of 20-50%. Within the field of sustainability, energy conservation even of the order of 15% is considered substantial.
Other sources report the following PSFs:
- 5-25% for modest systems
- 40% for "highly optimized" systems
- Up to 75% for "very intense" systems
For more information see Solar Air Heat
Key passive solar building design concepts
There are six primary passive solar energy configurations:[20]- direct solar gain
- indirect solar gain
- isolated solar gain
- heat storage
- insulation and glazing
- passive cooling
Direct solar gain
Direct gain attempts to control the amount of direct solar radiation reaching the living space. This direct solar gain is a critical part of passive solar house designation as it imparts to a direct gain.The cost effectiveness of these configurations are currently being investigated in great detail and are demonstrating promising results.[21]
Indirect solar gain
Indirect gain attempts to control solar radiation reaching an area adjacent but not part of the living space. Heat enters the building through windows and is captured and stored in thermal mass (e.g. water tank, masonry wall) and slowly transmitted indirectly to the building through conduction and convection. Efficiency can suffer from slow response (thermal lag) and heat losses at night. Other issues include the cost of insulated glazing and developing effective systems to redistribute heat throughout the living area.Isolated solar gain
Isolated gain involves utilizing solar energy to passively move heat from or to the living space using a fluid, such as water or air by natural convection or forced convection. Heat gain can occur through a sunspace, solarium or solar closet. These areas may also be employed usefully as a greenhouse or drying cabinet. An equator-side sun room may have its exterior windows higher than the windows between the sun room and the interior living space, to allow the low winter sun to penetrate to the cold side of adjacent rooms. Glass placement and overhangs prevent solar gain during the summer. Earth cooling tubes or other passive cooling techniques can keep a solarium cool in the summer.Measures should be taken to reduce heat loss at night e.g. window coverings or movable window insulation.
Examples:
- Thermosiphon
- Barra system
- Double envelope house
- Thermal buffer zone[22]
- Solar space heating system
- Solar chimney
Heat storage
The sun doesn't shine all the time. Heat storage, or thermal mass, keeps the building warm when the sun can't heat it.In diurnal solar houses, the storage is designed for one or a few days. The usual method is a custom-constructed thermal mass. This includes a Trombe wall, a ventilated concrete floor, a cistern, water wall or roof pond.[23] It is also feasible to use the thermal mass of the earth itself, either as-is or by incorporation into the structure by banking or using rammed earth as a structural medium.[24]
In subarctic areas, or areas that have long terms without solar gain (e.g. weeks of freezing fog), purpose-built thermal mass is very expensive. Don Stephens pioneered an experimental technique to use the ground as thermal mass large enough for annualized heat storage. His designs run an isolated thermosiphon 3 m under a house, and insulate the ground with a 6 m waterproof skirt.[25]
Insulation
Main article: Building insulation
Thermal insulation or superinsulation (type, placement and amount) reduces unwanted leakage of heat.[9] Some passive buildings are actually constructed of insulation.Special glazing systems and window coverings
Main articles: Insulated glazing and Window covering
The effectiveness of direct solar gain systems is significantly enhanced by insulative (e.g. double glazing), spectrally selective glazing (low-e), or movable window insulation (window quilts, bifold interior insulation shutters, shades, etc.).[26]Generally, Equator-facing windows should not employ glazing coatings that inhibit solar gain.
There is extensive use of super-insulated windows in the German Passive House standard. Selection of different spectrally selective window coating depends on the ratio of heating versus cooling degree days for the design location.
Glazing selection
Equator-facing glass
The requirement for vertical equator-facing glass is different from the other three sides of a building. Reflective window coatings and multiple panes of glass can reduce useful solar gain. However, direct-gain systems are more dependent on double or triple glazing to reduce heat loss. Indirect-gain and isolated-gain configurations may still be able to function effectively with only single-pane glazing. Nevertheless, the optimal cost-effective solution is both location and system dependent.Roof-angle glass / Skylights
Skylights admit harsh direct overhead sunlight and glare[27] either horizontally (a flat roof) or pitched at the same angle as the roof slope. In some cases, horizontal skylights are used with reflectors to increase the intensity of solar radiation (and harsh glare), depending on the roof angle of incidence. When the winter sun is low on the horizon, most solar radiation reflects off of roof angled glass ( the angle of incidence is nearly parallel to roof-angled glass morning and afternoon ). When the summer sun is high, it is nearly perpendicular to roof-angled glass, which maximizes solar gain at the wrong time of year, and acts like a solar furnace. Skylights should be covered and well-insulated to reduce natural convection ( warm air rising ) heat loss on cold winter nights, and intense solar heat gain during hot spring/summer/fall days.The equator-facing side of a building is south in the northern hemisphere, and north in the southern hemisphere. Skylights on roofs that face away from the equator provide mostly indirect illumination, except for summer days when the sun may rise on the non-equator side of the building (at some latitudes). Skylights on east-facing roofs provide maximum direct light and solar heat gain in the summer morning. West-facing skylights provide afternoon sunlight and heat gain during the hottest part of the day.
Some skylights have expensive glazing that partially reduces summer solar heat gain, while still allowing some visible light transmission. However, if visible light can pass through it, so can some radiant heat gain (they are both electromagnetic radiation waves).
You can partially reduce some of the unwanted roof-angled-glazing summer solar heat gain by installing a skylight in the shade of deciduous (leaf-shedding) trees, or by adding a movable insulated opaque window covering on the inside or outside of the skylight. This would eliminate the daylight benefit in the summer. If tree limbs hang over a roof, they will increase problems with leaves in rain gutters, possibly cause roof-damaging ice dams, shorten roof life, and provide an easier path for pests to enter your attic. Leaves and twigs on skylights are unappealing, difficult to clean, and can increase the glazing breakage risk in wind storms.
"Sawtooth roof glazing" with vertical-glass-only can bring some of the passive solar building design benefits into the core of a commercial or industrial building, without the need for any roof-angled glass or skylights.
Skylights provide daylight. The only view they provide is essentially straight up in most applications. Well-insulated light tubes can bring daylight into northern rooms, without using a skylight. A passive-solar greenhouse provides abundant daylight for the equator-side of the building.
Infrared thermography color thermal imaging cameras ( used in formal energy audits ) can quickly document the negative thermal impact of roof-angled glass or a skylight on a cold winter night or hot summer day.
The U.S. Department of Energy states: "vertical glazing is the overall best option for sunspaces."[28] Roof-angled glass and sidewall glass are not recommended for passive solar sunspaces.
The U.S. DOE explains drawbacks to roof-angled glazing: Glass and plastic have little structural strength. When installed vertically, glass (or plastic) bears its own weight because only a small area (the top edge of the glazing) is subject to gravity. As the glass tilts off the vertical axis, however, an increased area (now the sloped cross-section) of the glazing has to bear the force of gravity. Glass is also brittle; it does not flex much before breaking. To counteract this, you usually must increase the thickness of the glazing or increase the number of structural supports to hold the glazing. Both increase overall cost, and the latter will reduce the amount of solar gain into the sunspace.
Another common problem with sloped glazing is its increased exposure to the weather. It is difficult to maintain a good seal on roof-angled glass in intense sunlight. Hail, sleet, snow, and wind may cause material failure. For occupant safety, regulatory agencies usually require sloped glass to be made of safety glass, laminated, or a combination thereof, which reduce solar gain potential. Most of the roof-angled glass on the Crowne Plaza Hotel Orlando Airport sunspace was destroyed in a single windstorm. Roof-angled glass increases construction cost, and can increase insurance premiums. Vertical glass is less susceptible to weather damage than roof-angled glass.
It is difficult to control solar heat gain in a sunspace with sloped glazing during the summer and even during the middle of a mild and sunny winter day. Skylights are the antithesis of zero energy building Passive Solar Cooling in climates with an air conditioning requirement.
Angle of incident radiation
The amount of solar gain transmitted through glass is also affected by the angle of the incident solar radiation. Sunlight striking glass within 20 degrees of perpendicular is mostly transmitted through the glass, whereas sunlight at more than 35 degrees from perpendicular is mostly reflected[29]All of these factors can be modeled more precisely with a photographic light meter and a heliodon or optical bench, which can quantify the ratio of reflectivity to transmissivity, based on angle of incidence.
Alternatively, passive solar computer software can determine the impact of sun path, and cooling-and-heating degree days on energy performance. Regional climatic conditions are often available from local weather services.
Operable shading and insulation devices
A design with too much equator-facing glass can result in excessive winter, spring, or fall day heating, uncomfortably bright living spaces at certain times of the year, and excessive heat transfer on winter nights and summer days.Although the sun is at the same altitude 6-weeks before and after the solstice, the heating and cooling requirements before and after the solstice are significantly different. Heat storage on the Earth's surface causes "thermal lag." Variable cloud cover influences solar gain potential. This means that latitude-specific fixed window overhangs, while important, are not a complete seasonal solar gain control solution.
Control mechanisms (such as manual-or-motorized interior insulated drapes, shutters, exterior roll-down shade screens, or retractable awnings) can compensate for differences caused by thermal lag or cloud cover, and help control daily / hourly solar gain requirement variations.
Home automation systems that monitor temperature, sunlight, time of day, and room occupancy can precisely control motorized window-shading-and-insulation devices.
Exterior colors reflecting - absorbing
Materials and colors can be chosen to reflect or absorb solar thermal energy. Using information on a Color for electromagnetic radiation to determine its thermal radiation properties of reflection or absorption can assist the choices.See Lawrence Berkeley National Laboratory and Oak Ridge National Laboratory: "Cool Colors"
Landscaping and gardens
Main article: Energy-efficient landscaping
Energy-efficient landscaping materials for careful passive solar choices include hardscape building material and "softscape" plants. The use of landscape design principles for selection of trees, hedges, and trellis-pergola features with vines; all can be used to create summer shading. For winter solar gain it is desirable to use deciduous plants that drop their leaves in the autumn gives year round passive solar benefits. Non-deciduous evergreen shrubs and trees can be windbreaks, at variable heights and distances, to create protection and shelter from winter wind chill. Xeriscaping with 'mature size appropriate' native species of-and drought tolerant plants, drip irrigation, mulching, and organic gardening practices reduce or eliminate the need for energy-and-water-intensive irrigation, gas powered garden equipment, and reduces the landfill waste footprint. Solar powered landscape lighting and fountain pumps, and covered swimming pools and plunge pools with solar water heaters can reduce the impact of such amenities.Other passive solar principles
Passive solar lighting
Main article: Passive solar lighting
Passive solar lighting techniques enhance taking advantage of natural illumination for interiors, and so reduce reliance on artificial lighting systems.This can be achieved by careful building design, orientation, and placement of window sections to collect light. Other creative solutions involve the use of reflecting surfaces to admit daylight into the interior of a building. Window sections should be adequately sized, and to avoid over-illumination can be shielded with a Brise soleil, awnings, well placed trees, glass coatings, and other passive and active devices.[20]
Another major issue for many window systems is that they can be potentially vulnerable sites of excessive thermal gain or heat loss. Whilst high mounted clerestory window and traditional skylights can introduce daylight in poorly oriented sections of a building, unwanted heat transfer may be hard to control.[30][31] Thus, energy that is saved by reducing artificial lighting is often more than offset by the energy required for operating HVAC systems to maintain thermal comfort.
Various methods can be employed to address this including but not limited to window coverings, insulated glazing and novel materials such as aerogel semi-transparent insulation, optical fiber embedded in walls or roof, or hybrid solar lighting at Oak Ridge National Laboratory.
Reflecting elements, from active and passive daylighting collectors, such as light shelves, lighter wall and floor colors, mirrored wall sections, interior walls with upper glass panels, and clear or translucent glassed hinged doors and sliding glass doors take the captured light and passively reflect it further inside. The light can be from passive windows or skylights and solar light tubes or from active daylighting sources. In traditional Japanese architecture the Shōji sliding panel doors, with translucent Washi screens, are an original precedent. International style, Modernist and Mid-century modern architecture were earlier innovators of this passive penetration and reflection in industrial, commercial, and residential applications.
Passive solar water heating
Main article: Solar hot water
There are many ways to use solar thermal energy to heat water for domestic use. Different active-and-passive solar hot water technologies have different location-specific economic cost benefit analysis implications.Fundamental passive solar hot water heating involves no pumps or anything electrical. It is very cost effective in climates that do not have lengthy sub-freezing, or very-cloudy, weather conditions.[32] Other active solar water heating technologies, etc. may be more appropriate for some locations.
It is possible to have active solar hot water which is also capable of being "off grid" and qualifies as sustainable. This is done by the use of a photovoltaic cell which uses energy from the sun to power the pumps.[citation needed]
Comparison to the Passive House standard in Europe
Main article: Passive house
There is growing momentum in Europe for the approach espoused by the Passive House (Passivhaus
in German) Institute in Germany. Rather than relying solely on
traditional passive solar design techniques, this approach seeks to make
use of all passive sources of heat, minimises energy usage, and
emphasises the need for high levels of insulation reinforced by
meticulous attention to detail in order to address thermal bridging and
cold air infiltration. Most of the buildings built to the Passive House
standard also incorporate an active heat recovery ventilation unit with or without a small (typically 1 kW) incorporated heating component.The energy design of Passive House buildings is developed using a spreadsheet-based modeling tool called the Passive House Planning Package (PHPP) which is updated periodically. The current version is PHPP2007, where 2007 is the year of issue. A building may be certified as a "Passive House" when it can be shown that it meets certain criteria, the most important being that the annual specific heat demand for the house should not exceed 15kWh/m2a.
Design tools
Traditionally a heliodon was used to simulate the altitude and azimuth of the sun shining on a model building at any time of any day of the year.[33] In modern times, computer programs can model this phenomenon and integrate local climate data (including site impacts such as overshadowing and physical obstructions) to predict the solar gain potential for a particular building design over the course of a year. GPS-based smartphone applications can now do this inexpensively on a hand held device. These design tools provide the passive solar designer the ability to evaluate local conditions, design elements and orientation prior to construction. Energy performance optimization normally requires an iterative-refinement design-and-evaluate process. There is no such thing as a "one-size-fits-all" universal passive solar building design that would work well in all locations.Levels of application
Many detached suburban houses can achieve reductions in heating expense without obvious changes to their appearance, comfort or usability.[34] This is done using good siting and window positioning, small amounts of thermal mass, with good-but-conventional insulation, weatherization, and an occasional supplementary heat source, such as a central radiator connected to a (solar) water heater. Sunrays may fall on a wall during the daytime and raise the temperature of its thermal mass. This will then radiate heat into the building in the evening. External shading, or a radiant barrier plus air gap, may be used to reduce undesirable summer solar gain.An extension of the "passive solar" approach to seasonal solar capture and storage of heat and cooling. These designs attempt to capture warm-season solar heat, and convey it to a seasonal thermal store for use months later during the cold season ("annualised passive solar.") Increased storage is achieved by employing large amounts of thermal mass or earth coupling. Anecdotal reports suggest they can be effective but no formal study has been conducted to demonstrate their superiority. The approach also can move cooling into the warm season. Examples:
- Passive Annual Heat Storage (PAHS) - by John Hait
- Annualized Geothermal Solar (AGS) heating - by Don Stephen
- Earthed-roof
Passive solar building design is often a foundational element of a cost-effective zero energy building.[35][36] Although a ZEB uses multiple passive solar building design concepts, a ZEB is usually not purely passive, having active mechanical renewable energy generation systems such as: wind turbine, photovoltaics, micro hydro, geothermal, and other emerging alternative energy sources.
Passive house
From Wikipedia, the free encyclopedia
Estimates of the number of Passivhaus buildings around the world in late 2008 ranged from 15,000 to 20,000 structures.[6][7] As of August 2010, there were approximately 25,000 such certified structures of all types in Europe, while in the United States there were only 13, with a few dozen more under construction.[1] The vast majority of passive structures have been built in German-speaking countries and Scandinavia.[6]
Contents
History
The Passivhaus standard originated from a conversation in May 1988 between Bo Adamson of Lund University, Sweden, and Wolfgang Feist of the Institut für Wohnen und Umwelt (Institute for Housing and the Environment, Germany).[8] Their concept was developed through a number of research projects,[9] aided by financial assistance from the German state of Hessen.First examples
The eventual building of four row houses (terraced houses or town homes) was designed for four private clients by the architectural firm of Bott, Ridder and Westermeyer. The first Passivhaus residences were built in Darmstadt, Germany in 1990, and occupied by the clients the following year.Further implementation and councils
In September 1996 the Passivhaus-Institut was founded, also in Darmstadt, to promote and control the standards. Since then, thousands of Passivhaus structures have been built, to an estimated 25,000+ as of 2010.[1][6][10] Most are located in Germany and Austria, with others in various countries worldwide.After the concept had been validated at Darmstadt, with space heating 90% less than required for a standard new building of the time, the Economical Passive Houses Working Group was created in 1996. This group developed the planning package and initiated the production of the innovative components that had been used, notably the windows and the high-efficiency ventilation systems. Meanwhile further passive houses were built in Stuttgart (1993), Naumburg, Hesse, Wiesbaden, and Cologne (1997).[11]
The products developed for the Passivhaus standard were further commercialised during and following the European Union sponsored CEPHEUS project, which proved the concept in five European countries over the winter of 2000–2001. In North America the first Passivhaus was built in Urbana, Illinois in 2003,[12] and the first to be certified was built in 2006 near Bemidji, Minnesota in Camp Waldsee of the German Concordia Language Villages.[13]
The first US passive retrofit project was certified in July 2010: the remodeled 2,400 sf craftsman O'Neill house in Sonoma, California.[14]
Ireland's first Passive House [15] was built in 2005 by Tomas O'Leary, a Passive house designer and teacher. The house was called 'Out of the Blue'. Upon completion, Tomas moved into the building.[16]
The world's first standardised passive prefabricated house was built in Ireland in 2005 by Scandinavian Homes,[17][18] a Swedish company that has since built more passive houses in England and Poland.[19]
Present day
Estimates in 2008 of the number of passive houses around the world ranged from 15,000 to 20,000.[6][20] The vast majority have been built in German-speaking countries or Scandinavia.[6] The first certified passive house in the Antwerpen region of Belgium was built in 2010.[21] In 2011 the city of Heidelberg in Germany initiated the Bahnstadt project, which was seen as the world's largest passive house building areas.[22] A company in Qatar is planning the country's first passivhaus in 2013,[23] the first in the region.Standards
Standards
The Passivhaus standard requires that the building fulfills the following requirements:[24][25]- The building must be designed to have an annual heating and cooling demand as calculated with the Passivhaus Planning Package of not more than 15 kWh/m2 (4,755 BTU/sq ft; 5.017 MJ/sq ft) per year in heating or cooling energy OR be designed with a peak heat load of 10 W/m2 (1.2 hp/1000 sq ft)
- Total primary energy (source energy for electricity, etc.) consumption (primary energy for heating, hot water and electricity) must not be more than 120 kWh/m2 (38,040 BTU/sq ft; 40.13 MJ/sq ft) per year
- The building must not leak more air than 0.6 times the house volume per hour (n50 ≤ 0.6 / hour) at 50 Pa (0.0073 psi) as tested by a blower door
Recommendations
- Further, the specific heat load for the heating source at design temperature is recommended, but not required, to be less than 10 W/m² (3.17 btu/h.ft²).
National partners within the 'consortium for the Promotion of European Passive Houses' are thought to have some flexibility to adapt these limits locally.[26]
Space heating requirement
By achieving the Passivhaus standards, qualified buildings are able to dispense with conventional heating systems. While this is an underlying objective of the Passivhaus standard, some type of heating will still be required and most Passivhaus buildings do include a system to provide supplemental space heating. This is normally distributed through the low-volume heat recovery ventilation system that is required to maintain air quality, rather than by a conventional hydronic or high-volume forced-air heating system, as described in the space heating section below.Construction costs
In Passivhaus buildings, the cost savings from dispensing with the conventional heating system can be used to fund the upgrade of the building envelope and the heat recovery ventilation system. With careful design and increasing competition in the supply of the specifically designed Passivhaus building products, in Germany it is now possible to construct buildings for the same cost as those built to normal German building standards, as was done with the Passivhaus apartments at Vauban, Freiburg.[27] On average passive houses are reported to be more expensive upfront than conventional buildings - 5% to 8% in Germany,[28][29] 8% to 10% in UK[30] and 5% to 10% in USA.[31][32][33][34]Evaluations have indicated that while it is technically possible, the costs of meeting the Passivhaus standard increase significantly when building in Northern Europe above 60° latitude.[35][36] European cities at approximately 60° include Helsinki in Finland and Bergen in Norway. London is at 51°; Moscow is at 55°.
These facts have led a number of architects to construct buildings that use the ground under the building for massive heat storage to shift heat production from the winter to the summer. Some buildings can also shift cooling from the summer to the winter. At least one designer uses a passive thermosiphon carrying only air, so the process can be accomplished without expensive, unreliable machinery.[37] (See also Annualized geo solar)
Design and construction
To achieve the standards, a number of techniques and technologies are used in combination:[2]
Passive solar design and landscape
Passive solar building design and energy-efficient landscaping support the Passive house energy conservation and can integrate them into a neighborhood and environment. Following passive solar building techniques, where possible buildings are compact in shape to reduce their surface area, with principal windows oriented towards the equator - south in the northern hemisphere and north in the southern hemisphere - to maximize passive solar gain. However, the use of solar gain, especially in temperate climate regions, is secondary to minimizing the overall house energy requirements. In climates and regions needing to reduce excessive summer passive solar heat gain, whether from direct or reflected sources, Brise soleil, trees, attached pergolas with vines, vertical gardens, green roofs, and other techniques are implemented.Passive houses can be constructed from dense or lightweight materials, but some internal thermal mass is normally incorporated to reduce summer peak temperatures, maintain stable winter temperatures, and prevent possible overheating in spring or autumn before the higher sun angle "shades" mid-day wall exposure and window penetration. Exterior wall color, when the surface allows choice, for reflection or absorption insolation qualities depends on the predominant year-round ambient outdoor temperature. The use of deciduous trees and wall trellised or self attaching vines can assist in climates not at the temperature extremes.
Superinsulation
Passivhaus buildings employ superinsulation to significantly reduce the heat transfer through the walls, roof and floor compared to conventional buildings.[39] A wide range of thermal insulation materials can be used to provide the required high R-values (low U-values, typically in the 0.10 to 0.15 W/(m².K) range). Special attention is given to eliminating thermal bridges.A disadvantage resulting from the thickness of wall insulation required is that, unless the external dimensions of the building can be enlarged to compensate, the internal floor area of the building may be less compared to traditional construction.
In Sweden, to achieve passive house standards, the insulation thickness would be 335 mm (about 13 in) (0.10 W/(m².K)) and the roof 500 mm (about 20 in) (U-value 0.066 W/(m².K)).
Advanced window technology
In Central Europe and most of the United States, for unobstructed south-facing Passivhaus windows, the heat gains from the sun are, on average, greater than the heat losses, even in mid-winter.
Airtightness
Building envelopes under the Passivhaus standard are required to be extremely airtight compared to conventional construction.Passive house is designed so that most of the air exchange with exterior is done by controlled ventilation through a heat-exchanger in order to minimize heat loss (or gain, depending on climate), so uncontrolled air leaks are best avoided.[2] Another reason is the passive house standard makes extensive use of insulation which usually requires a careful management of moisture and dew points.[40] This is achieved through air barriers, careful sealing of every construction joint in the building envelope, and sealing of all service penetrations.[39]
Ventilation
Use of passive natural ventilation is an integral component of passive house design where ambient temperature is conducive — either by singular or cross ventilation, by a simple opening or enhanced by the stack effect from smaller ingress with larger egress windows and/or clerestory-operable skylight.When ambient climate is not conducive, mechanical heat recovery ventilation systems, with a heat recovery rate of over 80% and high-efficiency electronically commutated motors (ECM), are employed to maintain air quality, and to recover sufficient heat to dispense with a conventional central heating system.[2] Since passively designed buildings are essentially air-tight, the rate of air change can be optimized and carefully controlled at about 0.4 air changes per hour. All ventilation ducts are insulated and sealed against leakage.
Some Passivhaus builders promote the use of earth warming tubes (typically ≈200 mm (~7,9 in) diameter, ≈40 m (~130 ft) long at a depth of ≈1.5 m (~5 ft)). These are buried in the soil to act as earth-to-air heat exchangers and pre-heat (or pre-cool) the intake air for the ventilation system. In cold weather the warmed air also prevents ice formation in the heat recovery system's heat exchanger. Concerns about this technique have arisen in some climates due to problems with condensation and mold.[41]
Alternatively, an earth to air heat exchanger can use a liquid circuit instead of an air circuit, with a heat exchanger (battery) on the supply air.
Space heating
Together with the comprehensive energy conservation measures taken, this means that a conventional central heating system is not necessary, although they are sometimes installed due to client skepticism.[42]
Instead, Passive houses sometimes have a dual purpose 800 to 1,500 watt heating and/or cooling element integrated with the supply air duct of the ventilation system, for use during the coldest days. It is fundamental to the design that all the heat required can be transported by the normal low air volume required for ventilation. A maximum air temperature of 50 °C (122 °F) is applied, to prevent any possible smell of scorching from dust that escapes the filters in the system.
The air-heating element can be heated by a small heat pump, by direct solar thermal energy, annualized geothermal solar, or simply by a natural gas or oil burner. In some cases a micro-heat pump is used to extract additional heat from the exhaust ventilation air, using it to heat either the incoming air or the hot water storage tank. Small wood-burning stoves can also be used to heat the water tank, although care is required to ensure that the room in which stove is located does not overheat.
Beyond the recovery of heat by the heat recovery ventilation unit, a well designed Passive house in the European climate should not need any supplemental heat source if the heating load is kept under 10W/m².[43]
Because the heating capacity and the heating energy required by a passive house both are very low, the particular energy source selected has fewer financial implications than in a traditional building, although renewable energy sources are well suited to such low loads.
The Passive House Standards in Europe determine a Space Heating and cooling Energy Demand of 15 kilowatt hours per square meter of Treated Floor Area per year or 10 Watts per square meter peak demand. (Or in Imperial units 4.75 kBTU/sf*yr and 3.2 BTU/hr*sf respectively.) In addition, the total energy to be used in the building operations including heating, cooling, lighting, equipment, hot water, plug loads, etc. is limited to 120 kilowatt hours per square meter of Treated Floor Area per year. (Or in Imperial units 38.0 BTU/sf*yr.)[44]
Lighting and electrical appliances
To minimize the total primary energy consumption, the many passive and active daylighting techniques are the first daytime solution to employ. For low light level days, non-daylighted spaces, and nighttime; the use of creative-sustainable lighting design using low-energy sources such as 'standard voltage' compact fluorescent lamps and solid-state lighting with Light-emitting diode-LED lamps, organic light-emitting diodes, and PLED - polymer light-emitting diodes; and 'low voltage' electrical filament-Incandescent light bulbs, and compact Metal halide, Xenon and Halogen lamps, can be used.Solar powered exterior circulation, security, and landscape lighting - with photovoltaic cells on each fixture or connecting to a central Solar panel system, are available for gardens and outdoor needs. Low voltage systems can be used for more controlled or independent illumination, while still using less electricity than conventional fixtures and lamps. Timers, motion detection and natural light operation sensors reduce energy consumption, and light pollution even further for a Passivhaus setting.
Appliance consumer products meeting independent energy efficiency testing and receiving Ecolabel certification marks for reduced electrical-'natural-gas' consumption and product manufacturing carbon emission labels are preferred for use in Passive houses. The ecolabel certification marks of Energy Star and EKOenergy are examples.
Traits of passive houses
Typically, passive houses feature:- Fresh, clean air: Note that for the parameters tested, and provided the filters (minimum F6) are maintained, HEPA quality air is provided. 0.3 air changes per hour (ACH) are recommended, otherwise the air can become "stale" (excess CO2, flushing of indoor air pollutants) and any greater, excessively dry (less than 40% humidity). This implies careful selection of interior finishes and furnishings, to minimize indoor air pollution from VOC's (e.g., formaldehyde). This can be counteracted somewhat by opening a window for a very brief time, by plants, and by indoor fountains.
- Because of the high resistance to heat flow (high R-value insulation), there are no "outside walls" which are colder than other walls.
- Homogeneous interior temperature: it is impossible to have single rooms (e.g. the sleeping rooms) at a different temperature from the rest of the house. Note that the relatively high temperature of the sleeping areas is physiologically not considered desirable by some building scientists. Bedroom windows can be cracked open slightly to alleviate this when necessary.
- Slow temperature changes: with ventilation and heating systems switched off, a passive house typically loses less than 0.5 °C (1 °F) per day (in winter), stabilizing at around 15 °C (59 °F) in the central European climate.
- Quick return to normal temperature: opening windows or doors for a short time has only a limited effect; after apertures are closed, the air very quickly returns to the "normal" temperature.
- Some have voiced concerns that Passivhaus is not a general approach as the occupant has to behave in a prescribed way, for example not opening windows too often. However modelling shows that such concerns are not valid.[45]
International comparisons
- In the United States, a house built to the Passive House standard results in a building that requires space heating energy of 1 BTU per square foot (11 kJ/m²) per heating degree day, compared with about 5 to 15 BTUs per square foot (56-170 kJ/m²) per heating degree day for a similar building built to meet the 2003 Model Energy Efficiency Code. This is between 75 and 95% less energy for space heating and cooling than current new buildings that meet today's US energy efficiency codes. The Passivhaus in the German-language camp of Waldsee, Minnesota was designed under the guidance of architect Stephan Tanner of INTEP, LLC, a Minneapolis- and Munich-based consulting company for high performance and sustainable construction. Waldsee BioHaus is modeled on Germany’s Passivhaus standard: beyond that of the U.S. LEED standard which improves quality of life inside the building while using 85% less energy than a house built to Minnesota building codes.[46] VOLKsHouse 1.0 was the first certified Passive House offered and sold in Santa Fe New Mexico.[47]
- In the United Kingdom, an average new house built to the Passive House standard would use 77% less energy for space heating, compared to the circa-2006 Building Regulations.[48]
- In Ireland, it is calculated that a typical house built to the Passive House standard instead of the 2002 Building Regulations would consume 85% less energy for space heating and cut space-heating related carbon emissions by 94%.[49]
Comparison with zero energy buildings
Main article: Zero-energy building
A net zero-energy building (ZEB) is a building that over a year does
not use more energy than it generates. The first 1979 Zero Energy Design
building used passive solar heating and cooling techniques with
air-tight construction and super insulation. A few ZEB’s fail to fully
exploit more affordable conservation technology and all use onsite
active renewable energy technologies like photovoltaic
to offset the building's primary energy consumption. Passive House and
ZEB are complementary synergistic technology approaches, based on the
same physics of thermal energy transfer and storage: ZEBs drive the
annual energy consumption down to 0 kWh/m² with help from on-site
renewable energy sources and can benefit from materials and methods
which are used to meet the Passive House demand constraint of 120 kWh/m²
which will minimize the need for the often costly on-site renewable
energy sources. Energy Plus houses
are similar to both PassivHaus and ZEB but emphasize the production of
more energy per year than they consume, e.g., annual energy performance
of -25 kWh/m² is an Energy Plus house.Tropical climate needs
In a tropical climate, it could be helpful for ideal internal conditions to use Energy Recovery Ventilation instead of Heat Recovery Ventilation to reduce the humidity load of ventilation on the mechanical dehumidification system. Although dehumidifiers might be used, heat pump hot water heaters also will act to cool and condense interior humidity (where it can be dumped into drains ) and dump the heat into the hot water tank. Passive cooling, solar air conditioning, and other solutions in passive solar building design need to be studied to adapt the Passive house concept for use in more regions of the world.There is a certified Passive House in the hot and humid climate of Lafayette, Louisiana, USA, which uses Energy Recovery Ventilation and an efficient one ton air-conditioner to provide cooling and dehumidification.[50][51]
Solar access is a very important factor in any design of a passive house as it allows the structure to use the solar energy to heat and light the space naturally, replace electrical water heaters with solar-energy-based water heaters.
Part of a series on |
Renewable energy |
---|
Part of a series about |
Sustainable energy |
---|
Energy conservation |
Renewable energy |
Sustainable transport |
It uses the earth as a heat source (in the winter) or a heat sink (in the summer). This design takes advantage of the moderate temperatures in the ground to boost efficiency and reduce the operational costs of heating and cooling systems, and may be combined with solar heating to form a geosolar system with even greater efficiency. Ground source heat pumps are also known as "geothermal heat pumps" although, strictly, the heat does not come primarily from the centre of the Earth, but from the Sun. They are also known by other names, including geoexchange, earth-coupled, earth energy systems. The engineering and scientific communities prefer the terms "geoexchange" or "ground source heat pumps" to avoid confusion with traditional geothermal power, which uses a high temperature heat source to generate electricity.[1] Ground source heat pumps harvest heat absorbed at the Earth's surface from solar energy. The temperature in the ground below 6 metres (20 ft) is roughly equal to the mean annual air temperature[2] at that latitude at the surface.
Depending on latitude, the temperature beneath the upper 6 metres (20 ft) of Earth's surface maintains a nearly constant temperature between 10 and 16 °C (50 and 60 °F),[3] if the temperature is undisturbed by the presence of a heat pump. Like a refrigerator or air conditioner, these systems use a heat pump to force the transfer of heat from the ground. Heat pumps can transfer heat from a cool space to a warm space, against the natural direction of flow, or they can enhance the natural flow of heat from a warm area to a cool one. The core of the heat pump is a loop of refrigerant pumped through a vapor-compression refrigeration cycle that moves heat. Air-source heat pumps are typically more efficient at heating than pure electric heaters, even when extracting heat from cold winter air, although efficiencies begin dropping significantly as outside air temperatures drop below 5 °C (41 °F). A ground source heat pump exchanges heat with the ground. This is much more energy-efficient because underground temperatures are more stable than air temperatures through the year. Seasonal variations drop off with depth and disappear below 7 metres (23 ft)[4] to 12 metres (39 ft)[5] due to thermal inertia. Like a cave, the shallow ground temperature is warmer than the air above during the winter and cooler than the air in the summer. A ground source heat pump extracts ground heat in the winter (for heating) and transfers heat back into the ground in the summer (for cooling). Some systems are designed to operate in one mode only, heating or cooling, depending on climate.
Geothermal pump systems reach fairly high coefficient of performance (CoP), 3 to 6, on the coldest of winter nights, compared to 1.75–2.5 for air-source heat pumps on cool days.[6] Ground source heat pumps (GSHPs) are among the most energy efficient technologies for providing HVAC and water heating.[7][8]
Setup costs are higher than for conventional systems, but the difference is usually returned in energy savings in 3 to 10 years, and even shorter lengths of time with federal, state and utility tax credits and incentives. Geothermal heat pump systems are reasonably warranted by manufacturers, and their working life is estimated at 25 years for inside components and 50+ years for the ground loop.[9] As of 2004, there are over a million units installed worldwide providing 12 GW of thermal capacity, with an annual growth rate of 10%.[10]
Contents
Differing terms and definitions
This section requires expansion. (February 2010) |
History
The heat pump was described by Lord Kelvin in 1853 and developed by Peter Ritter von Rittinger in 1855. After experimenting with a freezer, Robert C. Webber built the first direct exchange ground-source heat pump in the late 1940s.[11] The first successful commercial project was installed in the Commonwealth Building (Portland, Oregon) in 1948, and has been designated a National Historic Mechanical Engineering Landmark by ASME.[12] The technology became popular in Sweden in the 1970s, and has been growing slowly in worldwide acceptance since then. Open loop systems dominated the market until the development of polybutylene pipe in 1979 made closed loop systems economically viable.[12] As of 2004, there are over a million units installed worldwide providing 12 GW of thermal capacity.[10] Each year, about 80,000 units are installed in the US (geothermal energy is used in all 50 U.S. states today, with great potential for near-term market growth and savings)[13] and 27,000 in Sweden.[10] In Finland, a geothermal heat pump was the most common heating system choice for new detached houses between 2006 and 2011 with market share exceeding 40%.[14]Ground heat exchanger
See also: Ground-coupled heat exchanger
In the summer, the process can be reversed so the heat pump extracts heat from the building and transfers it to the ground. Transferring heat to a cooler space takes less energy, so the cooling efficiency of the heat pump gains benefits from the lower ground temperature.
Ground source heat pumps employ a heat exchanger in contact with the ground or groundwater to extract or dissipate heat. This component accounts for anywhere from a fifth to half of the total system cost, and would be the most cumbersome part to repair or replace. Correctly sizing this component is necessary to assure long-term performance: the energy efficiency of the system improves with roughly 4% for every degree Celsius that is won through correct sizing, and the underground temperature balance must be maintained through proper design of the whole system.
Shallow 3–8-foot (0.91–2.44 m) horizontal heat exchangers experience seasonal temperature cycles due to solar gains and transmission losses to ambient air at ground level. These temperature cycles lag behind the seasons because of thermal inertia, so the heat exchanger will harvest heat deposited by the sun several months earlier, while being weighed down in late winter and spring, due to accumulated winter cold. Deep vertical systems 100–500 feet (30–152 m) deep rely on migration of heat from surrounding geology, unless they are recharged annually by solar recharge of the ground or exhaust heat from air conditioning systems.
Several major design options are available for these, which are classified by fluid and layout. Direct exchange systems circulate refrigerant underground, closed loop systems use a mixture of anti-freeze and water, and open loop systems use natural groundwater.
Direct exchange
Main article: Direct exchange geothermal heat pump
The direct exchange geothermal heat pump
is the oldest type of geothermal heat pump technology. The
ground-coupling is achieved through a single loop, circulating
refrigerant, in direct thermal contact with the ground (as opposed to a
combination of a refrigerant loop and a water loop). The refrigerant
leaves the heat pump cabinet, circulates through a loop of copper tube
buried underground, and exchanges heat with the ground before returning
to the pump. The name "direct exchange" refers to heat transfer between
the refrigerant loop and the ground without the use of an intermediate
fluid. There is no direct interaction between the fluid and the earth;
only heat transfer through the pipe wall. Direct exchange heat pumps,
which are now rarely used, are not to be confused with "water-source
heat pumps" or "water loop heat pumps" since there is no water in the
ground loop. ASHRAE defines the term ground-coupled heat pump to encompass closed loop and direct exchange systems, while excluding open loops.Direct exchange systems are more efficient and have potentially lower installation costs than closed loop water systems. Copper's high thermal conductivity contributes to the higher efficiency of the system, but heat flow is predominantly limited by the thermal conductivity of the ground, not the pipe. The main reasons for the higher efficiency are the elimination of the water pump (which uses electricity), the elimination of the water-to-refrigerant heat exchanger (which is a source of heat losses), and most importantly, the latent heat phase change of the refrigerant in the ground itself.
While they require more refrigerant and their tubing is more expensive per foot, a direct exchange earth loop is shorter than a closed water loop for a given capacity. A direct exchange system requires only 15 to 30% of the length of tubing and half the diameter of drilled holes, and the drilling or excavation costs are therefore lower. Refrigerant loops are less tolerant of leaks than water loops because gas can leak out through smaller imperfections. This dictates the use of brazed copper tubing, even though the pressures are similar to water loops. The copper loop must be protected from corrosion in acidic soil through the use of a sacrificial anode or other cathodic protection.
The U.S. Environmental Protection Agency conducted field monitoring of a direct geoexchange heat pump water heating system in a commercial application. The EPA reported that the system saved 75% of the electrical energy that would have been required by an electrical resistance water heating unit. According to the EPA, if the system is operated to capacity, it can avoid the emission of up to 7,100 pounds of CO2 and 15 pounds of NOx each year per ton of compressor capacity (or 42,600 lbs. of CO2 and 90 lbs. of NOx for a typical 6 ton system).[15]
In Northern climates, although the earth temperature is cooler, so is the incoming water temperature, which enables the high efficiency systems to replace more energy than would otherwise be required of electric or fossil fuel fired systems. Any temperature above -40 °F is sufficient to evaporate the refrigerant, and the direct exchange system can harvest energy through ice.
In extremely hot climates with dry soil, the addition of an auxiliary cooling module as a second condenser in line between the compressor and the earth loops increases efficiency and can further reduce the amount of earth loop to be installed.[citation needed]
Closed loop
Most installed systems have two loops on the ground side: the primary refrigerant loop is contained in the appliance cabinet where it exchanges heat with a secondary water loop that is buried underground. The secondary loop is typically made of high-density polyethylene pipe and contains a mixture of water and anti-freeze (propylene glycol, denatured alcohol or methanol). Monopropylene glycol has the least damaging potential when it might leak into the ground, and is therefore the only allowed anti-freeze in ground sources in an increasing number of European countries. After leaving the internal heat exchanger, the water flows through the secondary loop outside the building to exchange heat with the ground before returning. The secondary loop is placed below the frost line where the temperature is more stable, or preferably submerged in a body of water if available. Systems in wet ground or in water are generally more efficient than drier ground loops since it is less work to move heat in and out of water than solids in sand or soil. If the ground is naturally dry, soaker hoses may be buried with the ground loop to keep it wet.Closed loop tubing can be installed horizontally as a loop field in trenches or vertically as a series of long U-shapes in wells (see below). The size of the loop field depends on the soil type and moisture content, the average ground temperature and the heat loss and or gain characteristics of the building being conditioned. A rough approximation of the initial soil temperature is the average daily temperature for the region.
Vertical
Horizontal
The depth at which the loops are placed significantly influences the energy consumption of the heat pump in two opposite ways: shallow loops tend to indirectly absorb more heat from the sun, which is helpful, especially when the ground is still cold after a long winter. On the other hand, shallow loops are also cooled down much more readily by weather changes, especially during long cold winters, when heating demand peaks. Often, the second effect is much greater than the first one, leading to higher costs of operation for the more shallow ground loops. This problem can be reduced by increasing both the depth and the length of piping, thereby significantly increasing costs of installation. However, such expenses might be deemed feasible, as they may result in lower operating costs. Recent studies show that utilization of a non-homogeneous soil profile with a layer of low conductive material above the ground pipes can help mitigate the adverse effects of shallow pipe burial depth. The intermediate blanket with lower conductivity than the surrounding soil profile demonstrated the potential to increase the energy extraction rates from the ground to as high as 17% for a cold climate and about 5-6% for a relatively moderate climate.[18]
A slinky (also called coiled) closed loop field is a type of horizontal closed loop where the pipes overlay each other (not a recommended method). The easiest way of picturing a slinky field is to imagine holding a slinky on the top and bottom with your hands and then moving your hands in opposite directions. A slinky loop field is used if there is not adequate room for a true horizontal system, but it still allows for an easy installation. Rather than using straight pipe, slinky coils use overlapped loops of piping laid out horizontally along the bottom of a wide trench. Depending on soil, climate and the heat pump's run fraction, slinky coil trenches can be up to two thirds shorter than traditional horizontal loop trenches. Slinky coil ground loops are essentially a more economical and space efficient version of a horizontal ground loop.[19]
Radial or directional drilling
As an alternative to trenching, loops may be laid by mini horizontal directional drilling (mini-HDD). This technique can lay piping under yards, driveways, gardens or other structures without disturbing them, with a cost between those of trenching and vertical drilling. This system also differs from horizontal & vertical drilling as the loops are installed from one central chamber, further reducing the ground space needed. Radial drilling is often installed retroactively (after the property has been built) due to the small nature of the equipment used and the ability to bore beneath existing constructions.Pond
Open loop
In an open loop system (also called a groundwater heat pump), the secondary loop pumps natural water from a well or body of water into a heat exchanger inside the heat pump. ASHRAE calls open loop systems groundwater heat pumps or surface water heat pumps, depending on the source. Heat is either extracted or added by the primary refrigerant loop, and the water is returned to a separate injection well, irrigation trench, tile field or body of water. The supply and return lines must be placed far enough apart to ensure thermal recharge of the source. Since the water chemistry is not controlled, the appliance may need to be protected from corrosion by using different metals in the heat exchanger and pump. Limescale may foul the system over time and require periodic acid cleaning. This is much more of a problem with cooling systems than heating systems.[20] Also, as fouling decreases the flow of natural water, it becomes difficult for the heat pump to exchange building heat with the groundwater. If the water contains high levels of salt, minerals, iron bacteria or hydrogen sulfide, a closed loop system is usually preferable.Deep lake water cooling uses a similar process with an open loop for air conditioning and cooling. Open loop systems using ground water are usually more efficient than closed systems because they are better coupled with ground temperatures. Closed loop systems, in comparison, have to transfer heat across extra layers of pipe wall and dirt.
A growing number of jurisdictions have outlawed open-loop systems that drain to the surface because these may drain aquifers or contaminate wells. This forces the use of more environmentally sound injection wells or a closed loop system.
Standing column well
A standing column well system is a specialized type of open loop system. Water is drawn from the bottom of a deep rock well, passed through a heat pump, and returned to the top of the well, where traveling downwards it exchanges heat with the surrounding bedrock.[21] The choice of a standing column well system is often dictated where there is near-surface bedrock and limited surface area is available. A standing column is typically not suitable in locations where the geology is mostly clay, silt, or sand. If bedrock is deeper than 200 feet (61 m) from the surface, the cost of casing to seal off the overburden may become prohibitive.A multiple standing column well system can support a large structure in an urban or rural application. The standing column well method is also popular in residential and small commercial applications. There are many successful applications of varying sizes and well quantities in the many boroughs of New York City, and is also the most common application in the New England states. This type of ground source system has some heat storage benefits, where heat is rejected from the building and the temperature of the well is raised, within reason, during the summer cooling months which can then be harvested for heating in the winter months, thereby increasing the efficiency of the heat pump system. As with closed loop systems, sizing of the standing column system is critical in reference to the heat loss and gain of the existing building. As the heat exchange is actually with the bedrock, using water as the transfer medium, a large amount of production capacity (water flow from the well) is not required for a standing column system to work. However, if there is adequate water production, then the thermal capacity of the well system can be enhanced by discharging a small percentage of system flow during the peak Summer and Winter months.
Since this is essentially a water pumping system, standing column well design requires critical considerations to obtain peak operating efficiency. Should a standing column well design be misapplied, leaving out critical shut-off valves for example, the result could be an extreme loss in efficiency and thereby cause operational cost to be higher than anticipated.
Building distribution
Liquid-to-air heat pumps (also called water-to-air) output forced air, and are most commonly used to replace legacy forced air furnaces and central air conditioning systems. There are variations that allow for split systems, high-velocity systems, and ductless systems. Heat pumps cannot achieve as high a fluid temperature as a conventional furnace, so they require a higher volume flow rate of air to compensate. When retrofitting a residence, the existing duct work may have to be enlarged to reduce the noise from the higher air flow.
Ground source heat pumps are especially well matched to underfloor heating and baseboard radiator systems which only require warm temperatures 40 °C (104 °F) to work well. Thus they are ideal for open plan offices. Using large surfaces such as floors, as opposed to radiators, distributes the heat more uniformly and allows for a lower water temperature. Wood or carpet floor coverings dampen this effect because the thermal transfer efficiency of these materials is lower than that of masonry floors (tile, concrete). Underfloor piping, ceiling or wall radiators can also be used for cooling in dry climates, although the temperature of the circulating water must be above the dew point to ensure that atmospheric humidity does not condense on the radiator.
Combination heat pumps are available that can produce forced air and circulating water simultaneously and individually. These systems are largely being used for houses that have a combination of air and liquid conditioning needs, for example central air conditioning and pool heating.
Seasonal thermal storage
Main article: Seasonal thermal energy storage
Geosolar combisystems have been used to heat and cool a greenhouse using an aquifer for thermal storage.[23] In summer, the greenhouse is cooled with cold ground water. This heats the water in the aquifer which can become a warm source for heating in winter.[23][24] The combination of cold and heat storage with heat pumps can be combined with water/humidity regulation. These principles are used to provide renewable heat and renewable cooling[25] to all kinds of buildings.
Also the efficiency of existing small heat pump installations can be improved by adding large, cheap, water filled solar collectors. These may be integrated into a to-be-overhauled parking lot, or in walls or roof constructions by installing one inch PE pipes into the outer layer.
Thermal efficiency
Main article: thermal efficiency
The net thermal efficiency of a heat pump should take into account the efficiency of electricity generation and transmission, typically about 30%.[10]
Since a heat pump moves three to five times more heat energy than the
electric energy it consumes, the total energy output is much greater
than the electrical input. This results in net thermal efficiencies
greater than 300% as compared to radiant electric heat being 100%
efficient. Traditional combustion furnaces and electric heaters can never exceed 100% efficiency.Geothermal heat pumps can reduce energy consumption— and corresponding air pollution emissions—up to 44% compared to air source heat pumps and up to 72% compared to electric resistance heating with standard air-conditioning equipment.[26]
The dependence of net thermal efficiency on the electricity infrastructure tends to be an unnecessary complication for consumers and is not applicable to hydroelectric power, so performance of heat pumps is usually expressed as the ratio of heating output or heat removal to electricity input. Cooling performance is typically expressed in units of BTU/hr/watt as the energy efficiency ratio (EER), while heating performance is typically reduced to dimensionless units as the coefficient of performance (COP). The conversion factor is 3.41 BTU/hr/watt. Performance is influenced by all components of the installed system, including the soil conditions, the ground-coupled heat exchanger, the heat pump appliance, and the building distribution, but is largely determined by the "lift" between the input temperature and the output temperature.
For the sake of comparing heat pump appliances to each other, independently from other system components, a few standard test conditions have been established by the American Refrigerant Institute (ARI) and more recently by the International Organization for Standardization. Standard ARI 330 ratings were intended for closed loop ground-source heat pumps, and assume secondary loop water temperatures of 77 °F (25 °C) for air conditioning and 32 °F (0 °C) for heating. These temperatures are typical of installations in the northern US. Standard ARI 325 ratings were intended for open loop ground-source heat pumps, and include two sets of ratings for groundwater temperatures of 50 °F (10 °C) and 70 °F (21 °C). ARI 325 budgets more electricity for water pumping than ARI 330. Neither of these standards attempt to account for seasonal variations. Standard ARI 870 ratings are intended for direct exchange ground-source heat pumps. ASHRAE transitioned to ISO 13256-1 in 2001, which replaces ARI 320, 325 and 330. The new ISO standard produces slightly higher ratings because it no longer budgets any electricity for water pumps.[1]
Efficient compressors, variable speed compressors and larger heat exchangers all contribute to heat pump efficiency. Residential ground source heat pumps on the market today have standard COPs ranging from 2.4 to 5.0 and EERs ranging from 10.6 to 30.[1][27] To qualify for an Energy Star label, heat pumps must meet certain minimum COP and EER ratings which depend on the ground heat exchanger type. For closed loop systems, the ISO 13256-1 heating COP must be 3.3 or greater and the cooling EER must be 14.1 or greater.[28]
Actual installation conditions may produce better or worse efficiency than the standard test conditions. COP improves with a lower temperature difference between the input and output of the heat pump, so the stability of ground temperatures is important. If the loop field or water pump is undersized, the addition or removal of heat may push the ground temperature beyond standard test conditions, and performance will be degraded. Similarly, an undersized blower may allow the plenum coil to overheat and degrade performance.
Soil without artificial heat addition or subtraction and at depths of several metres or more remains at a relatively constant temperature year round. This temperature equates roughly to the average annual air-temperature of the chosen location, usually 7–12 °C (45–54 °F) at a depth of 6 metres (20 ft) in the northern US. Because this temperature remains more constant than the air temperature throughout the seasons, geothermal heat pumps perform with far greater efficiency during extreme air temperatures than air conditioners and air-source heat pumps.
Standards ARI 210 and 240 define Seasonal Energy Efficiency Ratio (SEER) and Heating Seasonal Performance Factors (HSPF) to account for the impact of seasonal variations on air source heat pumps. These numbers are normally not applicable and should not be compared to ground source heat pump ratings. However, Natural Resources Canada has adapted this approach to calculate typical seasonally adjusted HSPFs for ground-source heat pumps in Canada.[16] The NRC HSPFs ranged from 8.7 to 12.8 BTU/hr/watt (2.6 to 3.8 in nondimensional factors, or 255% to 375% seasonal average electricity utilization efficiency) for the most populated regions of Canada. When combined with the thermal efficiency of electricity, this corresponds to net average thermal efficiencies of 100% to 150%.
Environmental impact
The US Environmental Protection Agency (EPA) has called ground source heat pumps the most energy-efficient, environmentally clean, and cost-effective space conditioning systems available.[29] Heat pumps offer significant emission reductions potential, particularly where they are used for both heating and cooling and where the electricity is produced from renewable resources.Ground-source heat pumps have unsurpassed thermal efficiencies and produce zero emissions locally, but their electricity supply includes components with high greenhouse gas emissions, unless the owner has opted for a 100% renewable energy supply. Their environmental impact therefore depends on the characteristics of the electricity supply and the available alternatives.
Country | Electricity CO2 Emissions Intensity |
GHG savings relative to | ||
---|---|---|---|---|
natural gas | heating oil | electric heating | ||
Canada | 223 ton/GWh[30][31][32] | 2.7 ton/yr | 5.3 ton/yr | 3.4 ton/yr |
Russia | 351 ton/GWh[30][31] | 1.8 ton/yr | 4.4 ton/yr | 5.4 ton/yr |
US | 676 ton/GWh[31] | -0.5 ton/yr | 2.2 ton/yr | 10.3 ton/yr |
China | 839 ton/GWh[30][31] | -1.6 ton/yr | 1.0 ton/yr | 12.8 ton/yr |
- HL = seasonal heat load ≈ 80 GJ/yr for a modern detached house in the northern US
- FI = emissions intensity of fuel = 50 kg(CO2)/GJ for natural gas, 73 for heating oil, 0 for 100% renewable energy such as wind, hydro, photovoltaic or solar thermal
- AFUE = furnace efficiency ≈ 95% for a modern condensing furnace
- COP = heat pump coefficient of performance ≈ 3.2 seasonally adjusted for northern US heat pump
- EI = emissions intensity of electricity ≈ 200-800 ton(CO2)/GWh, depending on region
The fluids used in closed loops may be designed to be biodegradable and non-toxic, but the refrigerant used in the heat pump cabinet and in direct exchange loops was, until recently, chlorodifluoromethane, which is an ozone depleting substance.[1] Although harmless while contained, leaks and improper end-of-life disposal contribute to enlarging the ozone hole. For new construction, this refrigerant is being phased out in favor of the ozone-friendly but potent greenhouse gas R410A. The EcoCute water heater is an air-source heat pump that uses carbon dioxide as its working fluid instead of chlorofluorocarbons.[citation needed] Open loop systems (i.e. those that draw ground water as opposed to closed loop systems using a borehole heat exchanger) need to be balanced by reinjecting the spent water. This prevents aquifer depletion and the contamination of soil or surface water with brine or other compounds from underground.[citation needed]
Before drilling the underground geology needs to be understood, and drillers need to be prepared to seal the borehole, including preventing penetration of water between strata. The unfortunate example is a geothermal heating project in Staufen im Breisgau, Germany which seems the cause of considerable damage to historical buildings there. In 2008, the city centre was reported to have risen 12 cm,[33] after initially sinking a few millimeters.[34] The boring tapped a naturally pressurized aquifer, and via the borehole this water entered a layer of anhydrite, which expands when wet as it forms gypsum. The swelling will stop when the anhydrite is fully reacted, and reconstruction of the city center "is not expedient until the uplift ceases." By 2010 sealing of the borehole had not been accomplished.[35][36][37] By 2010, some sections of town had risen by 30 cm.[38]
Ground-source heat pump technology, like building orientation, is a natural building technique (bioclimatic building).
Economics
Ground source heat pumps are characterized by high capital costs and low operational costs compared to other HVAC systems. Their overall economic benefit depends primarily on the relative costs of electricity and fuels, which are highly variable over time and across the world. Based on recent prices, ground-source heat pumps currently have lower operational costs than any other conventional heating source almost everywhere in the world. Natural gas is the only fuel with competitive operational costs, and only in a handful of countries where it is exceptionally cheap, or where electricity is exceptionally expensive.[4] In general, a homeowner may save anywhere from 20% to 60% annually on utilities by switching from an ordinary system to a ground-source system.[39][40]Capital costs and system lifespan have received much less study until recently, and the return on investment is highly variable. The most recent data from an analysis of 2011-2012 incentive payments in the state of Maryland showed an average cost of residential systems of $1.90 per watt, or about $26,700 for a typical (4 ton) home system.[41] An older study found the total installed cost for a system with 10 kW (3 ton) thermal capacity for a detached rural residence in the US averaged $8000–$9000 in 1995 US dollars.[42] More recent studies found an average cost of $14,000 in 2008 US dollars for the same size system.[43][44] The US Department of Energy estimates a price of $7500 on its website, last updated in 2008.[45] One source in Canada placed prices in the range of $30,000-$34,000 Canadian dollars.[46] The rapid escalation in system price has been accompanied by rapid improvements in efficiency and reliability. Capital costs are known to benefit from economies of scale, particularly for open loop systems, so they are more cost-effective for larger commercial buildings and harsher climates. The initial cost can be two to five times that of a conventional heating system in most residential applications, new construction or existing. In retrofits, the cost of installation is affected by the size of living area, the home's age, insulation characteristics, the geology of the area, and location of the property. Proper duct system design and mechanical air exchange should be considered in the initial system cost.
Country | Payback period for replacing | ||
---|---|---|---|
natural gas | heating oil | electric heating | |
Canada | 13 years | 3 years | 6 years |
US | 12 years | 5 years | 4 years |
Germany | net loss | 8 years | 2 years |
Notes:
|
The lifespan of the system is longer than conventional heating and cooling systems. Good data on system lifespan is not yet available because the technology is too recent, but many early systems are still operational today after 25–30 years with routine maintenance. Most loop fields have warranties for 25 to 50 years and are expected to last at least 50 to 200 years.[39][48] Ground-source heat pumps use electricity for heating the house. The higher investment above conventional oil, propane or electric systems may be returned in energy savings in 2–10 years for residential systems in the US.[9][40][48] If compared to natural gas systems, the payback period can be much longer or non-existent. The payback period for larger commercial systems in the US is 1–5 years, even when compared to natural gas.[40] Additionally, because geothermal heat pumps usually have no outdoor compressors or cooling towers, the risk of vandalism is reduced or eliminated, potentially extending a system's lifespan.[49]
Ground source heat pumps are recognized as one of the most efficient heating and cooling systems on the market. They are often the second-most cost effective solution in extreme climates (after co-generation), despite reductions in thermal efficiency due to ground temperature. (The ground source is warmer in climates that need strong air conditioning, and cooler in climates that need strong heating.)
Commercial systems maintenance costs in the US have historically been between $0.11 to $0.22 per m2 per year in 1996 dollars, much less than the average $0.54 per m2 per year for conventional HVAC systems.[12]
Governments that promote renewable energy will likely offer incentives for the consumer (residential), or industrial markets. For example, in the United States, incentives are offered both on the state and federal levels of government.[50] In the United Kingdom the Renewable Heat Incentive provides a financial incentive for generation of renewable heat based on metered readings on an annual basis for 20 years for commercial buildings. The domestic Renewable Heat Incentive is due to be introduced in Spring 2014[51] for seven years and be based on deemed heat.
No comments:
Post a Comment