Search This Blog

Wikipedia

Search results

Wednesday, February 3, 2016

Revealed: Russia's Crewed Lunar Lander

http://www.popularmechanics.com/

​For the first time since the end of the Moon Race, Russian engineers have quietly begun working on a lunar lander capable of carrying cosmonauts to the Moon.


Although any future human trip to the Moon is still at least a decade away, behind the scenes, the next-generation lunar lander has already appeared on the drawing board—or more precisely, on a computer screen in Russia.
The four-legged machine will be able to take at least two cosmonauts from a lunar orbit to the surface of the Moon. It is being developed for Russia's own strategic goals in human space flight and, more importantly, for possible international cooperation, if the politics make it possible.
The nearly 20-ton spacecraft superficially resembles the famous Eagle lunar module, which delivered Neal Armstrong and Buzz Aldrin to the Moon, but the new Russian design is currently tailored for a smaller, cheaper Angara-5V rocket rather than a giant Moon rocket, like NASA's Saturn V from the Apollo era.
Russian engineers are counting on a pair of Angara-5V rockets to deliver the lander without the crew toward its departure point in the lunar orbit. Two more such rockets would be needed to carry a transport ship with four cosmonauts from Earth to the lunar orbit, where the two would link up. Two crew members could then transfer into the lunar module, undock, and make a descent to the Moon.

According to recent plans, the first Russian Moon landing could take place at the end of 2020s.
Unfortunately, the Russian space program has drastically slowed in recent years, due to economic troubles in the country. However, there is a chance that in the next few years, leading space agencies would strike a deal for a large-scale space venture after the International Space Station goes off-line in the second half of the 2020s.
Despite NASA's aspirations to go straight to Mars, it is increasingly clear that for its partners—primarily Russia and Europe—it would more affordable to start with the Moon. If the U.S. changes course and agrees on the joint lunar program, Russia's nascent lunar lander could come in very handy. That's because NASA long abandoned its own work on the Altair lunar lander to save money. At the same time, the US agency moves steadily toward the big SLS rocket, which is well-suited for lunar missions. So is the Orion spacecraft, which can deliver the crew to the lunar orbit, just few hundred kilometers from the Moon. The only crucial missing piece for the lunar expedition? The vehicle to carry astronauts to the surface.
As envisioned by Russian engineers, the human-rated lander would consist of the 11-ton descent stage carrying landing gear and the propulsion system responsible for the trip from lunar orbit to the surface. In the meantime, the 8.5-ton ascent stage will contain the crew cabin with all the life-support gear and the engine to blast off from the lunar surface and to get back to the orbit around the Moon. It will also sport an electricity-producing solar panel and a radiator.
The cabin will have two hatches, one in the front of the module leading to a surface ladder and another in the docking port at the top, for the crew transfer between the lunar module and the transport spacecraft, when they are docked.
So far, Russian engineers have looked carefully at various layouts for the crew cabin. Cone-shaped and globular shapes were evaluated, but eventually dropped in favor of a classic cylindrical design. To save room in the cockpit, engineers suspended propellant tanks on the exterior of the ascent stage.
The Russian space program inherited a very rich legacy in the lunar spacecraft engineering leftover from the glory days of the Moon Race. The USSR successfully put uncrewed robotic landers and rovers on the Moon and also worked on the crewed lander. The one-seat vehicle made three uncrewed test flights in the Earth's orbit, before the whole Soviet lunar landing effort was terminated in 1974.
Currently, Russian engineers are also assembling two robotic landers, first of which is scheduled to land in a polar region of the Moon in 2019. If the joint lunar exploration program goes ahead, the 2019 lander will become a precursor for human missions and even for a permanently occupied lunar base.
Anatoly Zak is a publisher of RussianSpaceWeb.comand the author of Russia in Space: the Past Explained, the Future Explored.

No comments:

Post a Comment