Search This Blog

Wikipedia

Search results

Sunday, September 1, 2013

Synthetic aperture radar

From Wikipedia, the free encyclopedia

The surface of Venus, as imaged by the Magellan probe using SAR
 
Synthetic-aperture radar (SAR) is a form of radar whose defining characteristic is its use of relative motion, between an antenna and its target region, to provide distinctive long-term coherent-signal variations, that are exploited to obtain finer spatial resolution than is possible with conventional beam-scanning means. It originated as an advanced form of side-looking airborne radar (SLAR).
SAR is usually implemented by mounting, on a moving platform such as an aircraft or spacecraft, a single beam-forming antenna from which a target scene is repeatedly illuminated with pulses of radio waves at wavelengths anywhere from a meter down to millimeters. The many echo waveforms received successively at the different antenna positions are coherently detected and stored and then post-processed together to resolve elements in an image of the target region.
Current (2010) airborne systems provide resolutions to about 10 cm, ultra-wideband systems provide resolutions of a few millimeters, and experimental terahertz SAR has provided sub-millimeter resolution in the laboratory.
SAR images have wide applications in remote sensing and mapping of the surfaces of both the Earth and other planets. SAR can also be implemented as "inverse SAR" by observing a moving target over a substantial time with a stationary antenna.

Relationship to phased arrays

A technique closely related to SAR uses an array (referred to as a "phased array") of real antenna elements spatially distributed over either one or two dimensions perpendicular to the radar-range dimension. These physical arrays are truly synthetic ones, indeed being created by synthesis of a collection of subsidiary physical antennas. Their operation need not involve motion relative to targets. All elements of these arrays receive simultaneously in real time, and the signals passing through them can be individually subjected to controlled shifts of the phases of those signals. One result can be to respond most strongly to radiation received from a specific small scene area, focusing on that area to determine its contribution to the total signal received. The coherently detected set of signals received over the entire array aperture can be replicated in several data-processing channels and processed differently in each. The set of responses thus traced to different small scene areas can be displayed together as an image of the scene.
In comparison, a SAR's (commonly) single physical antenna element gathers signals at different positions at different times. When the radar is carried by an aircraft or an orbiting vehicle, those positions are functions of a single variable, distance along the vehicle’s path, which is a single mathematical dimension (not necessarily the same as a linear geometric dimension). The signals are stored, thus becoming functions, no longer of time, but of recording locations along that dimension. When the stored signals are read out later and combined with specific phase shifts, the result is the same as if the recorded data had been gathered by an equally long and shaped phased array. What is thus synthesized is a set of signals equivalent to what could have been received simultaneously by such an actual large-aperture (in one dimension) phased array. The SAR simulates (rather than synthesizes) that long one-dimensional phased array. Although the term in the title of this article has thus been incorrectly derived, it is now firmly established by half a century of usage.
While operation of a phased array is readily understood as a completely geometric technique, the fact that a synthetic aperture system gathers its data as it (or its target) moves at some speed means that phases which varied with the distance traveled originally varied with time, hence constituted temporal frequencies. Temporal frequencies being the variables commonly used by radar engineers, their analyses of SAR systems are usually (and very productively) couched in such terms. In particular, the variation of phase during flight over the length of the synthetic aperture is seen as a sequence of Doppler shifts of the received frequency from that of the transmitted frequency. It is significant, though, to realize that, once the received data have been recorded and thus have become timeless, the SAR data-processing situation is also understandable as a special type of phased array, treatable as a completely geometric process.
The core of both the SAR and the phased array techniques is that the distances that radar waves travel to and back from each scene element consist of some integer number of wavelengths plus some fraction of a "final" wavelength. Those fractions cause differences between the phases of the re-radiation received at various SAR or array positions. Coherent detection is needed to capture the signal phase information in addition to the signal amplitude information. That type of detection requires finding the differences between the phases of the received signals and the simultaneous phase of a well-preserved sample of the transmitted illumination.
Every wave scattered from any point in the scene has a circular curvature about that point as a center. Signals from scene points at different ranges therefore arrive at a planar array with different curvatures, resulting in signal phase changes which follow different quadratic variations across a planar phased array. Additional linear variations result from points located in different directions from the center of the array. Fortunately, any one combination of these variations is unique to one scene point, and is calculable. For a SAR, the two-way travel doubles that phase change.
In reading the following two paragraphs, be particularly careful to distinguish between array elements and scene elements. Also remember that each of the latter has, of course, a matching image element.
Comparison of the array-signal phase variation across the array with the total calculated phase variation pattern can reveal the relative portion of the total received signal that came from the only scene point that could be responsible for that pattern. One way to do the comparison is by a correlation computation, multiplying, for each scene element, the received and the calculated field-intensity values array element by array element and then summing the products for each scene element. Alternatively, one could, for each scene element, subtract each array element’s calculated phase shift from the actual received phase and then vectorially sum the resulting field-intensity differences over the array. Wherever in the scene the two phases substantially cancel everywhere in the array, the difference vectors being added are in phase, yielding, for that scene point, a maximum value for the sum.
The equivalence of these two methods can be seen by recognizing that multiplication of sinusoids can be done by summing phases which are complex-number exponents of e, the base of natural logarithms.
However it is done, the image-deriving process amounts to "backtracking" the process by which nature previously spread the scene information over the array. In each direction, the process may be viewed as a Fourier transform, which is a type of correlation process. The image-extraction process we use can then be seen as another Fourier transform which is a reversal of the original natural one.
It is important to realize that only those sub-wavelength differences of successive ranges from the transmitting antenna to each target point and back, which govern signal phase, are used to refine the resolution in any geometric dimension. The central direction and the angular width of the illuminating beam do not contribute directly to creating that fine resolution. Instead, they serve only to select the solid-angle region from which usable range data are received. While some distinguishing of the ranges of different scene items can be made from the forms of their sub-wavelength range variations at short ranges, the very large depth of focus that occurs at long ranges usually requires that over-all range differences (larger than a wavelength) be used to define range resolutions comparable to the achievable cross-range resolution.

No comments:

Post a Comment