by Vanessa Janek
on February 20, 2015
Light speed is often spoken of as a cosmic speed limit… but not
everything plays by these rules. In fact, space itself can expand faster
than a photon could ever hope to travel.
Cosmologists are intellectual time travelers. Looking back over
billions of years, these scientists are able to trace the evolution of
our Universe in astonishing detail. 13.8 billion years ago, the Big Bang
occurred. Fractions of a second later, the fledgling Universe expanded
exponentially during an incredibly brief period of time called
inflation. Over the ensuing eons, our cosmos has grown to such an
enormous size that we can no longer see the other side of it.
But how can this be? If light’s velocity marks a cosmic speed limit, how can there possibly be regions of spacetime whose photons are forever out of our reach? And even if there are, how do we know that they exist at all?
The Expanding Universe
Like everything else in physics, our Universe strives to exist in the lowest possible energy state possible. But around 10-36 seconds after the Big Bang, inflationary cosmologists believe that the cosmos found itself resting instead at a “false vacuum energy” – a low-point that wasn’t really a low-point. Seeking the true nadir of vacuum energy, over a minute fraction of a moment, the Universe is thought to have ballooned by a factor of 1050.
Since that time, our Universe has continued to expand, but at a much slower pace. We see evidence of this expansion in the light from distant objects. As photons emitted by a star or galaxy propagate across the Universe, the stretching of space causes them to lose energy. Once the photons reach us, their wavelengths have been redshifted in accordance with the distance they have traveled.
But how can this be? If light’s velocity marks a cosmic speed limit, how can there possibly be regions of spacetime whose photons are forever out of our reach? And even if there are, how do we know that they exist at all?
The Expanding Universe
Like everything else in physics, our Universe strives to exist in the lowest possible energy state possible. But around 10-36 seconds after the Big Bang, inflationary cosmologists believe that the cosmos found itself resting instead at a “false vacuum energy” – a low-point that wasn’t really a low-point. Seeking the true nadir of vacuum energy, over a minute fraction of a moment, the Universe is thought to have ballooned by a factor of 1050.
Since that time, our Universe has continued to expand, but at a much slower pace. We see evidence of this expansion in the light from distant objects. As photons emitted by a star or galaxy propagate across the Universe, the stretching of space causes them to lose energy. Once the photons reach us, their wavelengths have been redshifted in accordance with the distance they have traveled.
Two sources of redshift: Doppler and cosmological expansion; modeled
after Koupelis & Kuhn. Bottom: Detectors catch the light that
is emitted by a central star. This light is stretched, or redshifted, as
space expands in between. Credit: Brews Ohare.
This is why cosmologists speak of redshift as a function of distance
in both space and time. The light from these distant objects has been
traveling for so long that, when we finally see it, we are seeing the
objects as they were billions of years ago.
The Hubble Volume
Redshifted light allows us to see objects like galaxies as they existed in the distant past; but we cannot see all events that occurred in our Universe during its history. Because our cosmos is expanding, the light from some objects is simply too far away for us ever to see.
The physics of that boundary rely, in part, on a chunk of surrounding spacetime called the Hubble volume. Here on Earth, we define the Hubble volume by measuring something called the Hubble parameter (H0), a value that relates the apparent recession speed of distant objects to their redshift. It was first calculated in 1929, when Edwin Hubble discovered that faraway galaxies appeared to be moving away from us at a rate that was proportional to the redshift of their light.
Fit of redshift velocities to Hubble’s law. Credit: Brews Ohare
Dividing the speed of light by H0, we get the Hubble volume. This spherical bubble encloses a region where all objects move away from a central observer at speeds less than the speed of light. Correspondingly, all objects outside of the Hubble volume move away from the center faster than the speed of light.
Yes, “faster than the speed of light.” How is this possible?
The Magic of Relativity
The answer has to do with the difference between special relativity and general relativity. Special relativity requires what is called an “inertial reference frame” – more simply, a backdrop. According to this theory, the speed of light is the same when compared in all inertial reference frames. Whether an observer is sitting still on a park bench on planet Earth or zooming past Neptune in a futuristic high-velocity rocketship, the speed of light is always the same. A photon always travels away from the observer at 300,000,000 meters per second, and he or she will never catch up.
General relativity, however, describes the fabric of spacetime itself. In this theory, there is no inertial reference frame. Spacetime is not expanding with respect to anything outside of itself, so the the speed of light as a limit on its velocity doesn’t apply. Yes, galaxies outside of our Hubble sphere are receding from us faster than the speed of light. But the galaxies themselves aren’t breaking any cosmic speed limits. To an observer within one of those galaxies, nothing violates special relativity at all. It is the space in between us and those galaxies that is rapidly proliferating and stretching exponentially.
The Observable Universe
Now for the next bombshell: The Hubble volume is not the same thing as the observable Universe.
To understand this, consider that as the Universe gets older, distant light has more time to reach our detectors here on Earth. We can see objects that have accelerated beyond our current Hubble volume because the light we see today was emitted when they were within it.
Strictly speaking, our observable Universe coincides with something called the particle horizon. The particle horizon marks the distance to the farthest light that we can possibly see at this moment in time – photons that have had enough time to either remain within, or catch up to, our gently expanding Hubble sphere.
And just what is this distance? A little more than 46 billion light years in every direction – giving our observable Universe a diameter of approximately 93 billion light years, or more than 500 billion trillion miles.
The observable universe, more technically known as the particle horizon.
(A quick note: the particle horizon is not the same thing as the cosmological event horizon. The particle horizon encompasses all the events in the past that we can currently see. The cosmological event horizon, on the other hand, defines a distance within which a future observer will be able to see the then-ancient light our little corner of spacetime is emitting today.
In other words, the particle horizon deals with the distance to past objects whose ancient light that we can see today; the cosmological event horizon deals with the distance that our present-day light that will be able to travel as faraway regions of the Universe accelerate away from us.)
Dark Energy
Thanks to the expansion of the Universe, there are regions of the cosmos that we will never see, even if we could wait an infinite amount of time for their light to reach us. But what about those areas just beyond the reaches of our present-day Hubble volume? If that sphere is also expanding, will we ever be able to see those boundary objects?
This depends on which region is expanding faster – the Hubble volume or the parts of the Universe just outside of it. And the answer to that question depends on two things: 1) whether H0 is increasing or decreasing, and 2) whether the Universe is accelerating or decelerating. These two rates are intimately related, but they are not the same.
In fact, cosmologists believe that we are actually living at a time when H0 is decreasing; but because of dark energy, the velocity of the Universe’s expansion is increasing.
That may sound counterintuitive, but as long as H0 decreases at a slower rate than that at which the Universe’s expansion velocity is increasing, the overall movement of galaxies away from us still occurs at an accelerated pace. And at this moment in time, cosmologists believe that the Universe’s expansion will outpace the more modest growth of the Hubble volume.
So even though our Hubble volume is expanding, the influence of dark energy appears to provide a hard limit to the ever-increasing observable Universe.
Our Earthly Limitations
Cosmologists seem to have a good handle on deep questions like what our observable Universe will someday look like and how the expansion of the cosmos will change. But ultimately, scientists can only theorize the answers to questions about the future based on their present-day understanding of the Universe. Cosmological timescales are so unimaginably long that it is impossible to say much of anything concrete about how the Universe will behave in the future. Today’s models fit the current data remarkably well, but the truth is that none of us will live long enough to see whether the predictions truly match all of the outcomes.
Disappointing? Sure. But totally worth the effort to help our puny brains consider such mind-bloggling science – a reality that, as usual, is just plain stranger than fiction.
About Vanessa Jane Vanessa earned her bachelor's degree in Astronomy and Physics in 2009 from Wheaton College in Massachusetts. Her credits in astronomy include observing and analyzing eclipsing binary star systems and taking a walk on the theory side as a NSF REU intern, investigating the expansion of the Universe by analyzing its traces in observations of type 1a supernovae. In her spare time she enjoys writing about astrophysics, cosmology, biology, and medicine, making delicious vegetarian meals, taking adventures with her husband and/or Nikon D50, and saving the world.
Dropping out of warp speed could have deadly results.
(Image: Paramount Pictures/CBS Studios)
Planning a little space travel to see some friends on Kepler 22b? Thinking of trying out your newly-installed FTL3000 Alcubierre Warp Drive to get you there in no time? Better not make it a surprise visit — your arrival may end up disintegrating anyone there when you show up.
“Warp” technology and faster-than-light (FTL) space travel has been a staple of science fiction for decades. The distances in space are just so vast and planetary systems — even within a single galaxy — are spaced so far apart, such a concept is needed to make casual human exploration feasible (and fit within the comforts of people’s imagination as well… nobody wants to think about Kirk and Spock bravely going to some alien planet while everyone they’ve ever known dies of old age!)
While many factors involving FTL travel are purely theoretical — and may remain in the realm of imagination for a very long time, if not ever — there are some concepts that play well with currently-accepted physics.
The Alcubierre warp drive is one of those concepts.
Proposed by Mexican theoretical physicist Miguel Alcubierre in 1994, the drive would propel a ship at superluminal speeds by creating a bubble of negative energy around it, expanding space (and time) behind the ship while compressing space in front of it. In much the same way that a surfer rides a wave, the bubble of space containing the ship and its passengers would be pushed at velocities not limited to the speed of light toward a destination.
Of course, when the ship reaches its destination it has to stop. And that’s when all hell breaks loose.
Researchers from the University of Sydney have done some advanced crunching of numbers regarding the effects of FTL space travel via Alcubierre drive, taking into consideration the many types of cosmic particles that would be encountered along the way. Space is not just an empty void between point A and point B… rather, it’s full of particles that have mass (as well as some that do not.) What the research team — led by Brendan McMonigal, Geraint Lewis, and Philip O’Byrne — has found is that these particles can get “swept up” into the warp bubble and focused into regions before and behind the ship, as well as within the warp bubble itself.
When the Alcubierre-driven ship decelerates from superluminal speed, the particles its bubble has gathered are released in energetic outbursts. In the case of forward-facing particles the outburst can be very energetic — enough to destroy anyone at the destination directly in front of the ship.
“Any people at the destination,” the team’s paper concludes, “would be gamma ray and high energy particle blasted into oblivion due to the extreme blueshifts for [forward] region particles.”
In other words, don’t expect much of a welcome party.
Another thing the team found is that the amount of energy released is dependent on the length of the superluminal journey, but there is potentially no limit on its intensity.
“Interestingly, the energy burst released upon arriving at the destination does not have an upper limit,” McMonigal told Universe Today in an email. “You can just keep on traveling for longer and longer distances to increase the energy that will be released as much as you like, one of the odd effects of General Relativity. Unfortunately, even for very short journeys the energy released is so large that you would completely obliterate anything in front of you.”
So how to avoid disintegrating your port of call? It may be as simple as just aiming your vessel a bit off to the side… or, it may not. The research only focused on the planar space in front of and behind the warp bubble; deadly postwarp particle beams could end up blown in all directions!
Luckily for Vulcans, Tatooinians and any acquaintances on Kepler 22b, the Alcubierre warp drive is still very much theoretical. While the mechanics work with Einstein’s General Theory of Relativity, the creation of negative energy densities is an as-of-yet unknown technology — and may be impossible.
Which could be a very good thing for us, should someone out there be planning a surprise visit our way!
Read more about Alcubierre warp drives here, and you can download the full University of Sydney team’s research paper here.
Thanks to Brendan McMonigal and Geraint Lewis for the extra information!
Main image © Paramount Pictures and CBS Studios. All rights reserved.
It’s always a welcome thing to learn that certain ideas that are common to science fiction have a basis in science fact. Cryogenic freezers, laser guns, robots, silicate implants… and let’s not forget the warp drive! Believe it or not, this concept – alternately known as FTL (Faster-Than-Light), Hyperspace, Warp drive, et al – actually has one foot in the world of real science. In physics, it is what is known as the Alcubierre Drive (or the Alcubierre Metric). On paper, it is a speculative, but apparently valid, solution of the Einstein field equations, specifically how space, time and energy interact. In this particular mathematical model of spacetime, there are features that are apparently reminiscent of the fictional “warp drive” or “hyperspace” from notable science fiction franchises, hence the association.
Since Einstein first proposed his field equations in the early 20th century, scientists have been operating under the strictures imposed by a relativistic universe. One of these strictures is the belief that the speed of light is unbreakable and hence, that there will never be such a thing as FTL space travel or exploration. Even though subsequent generations of scientists and engineers managed to break the sound barrier and defeat the pull of the Earth’s gravitational field, the speed of light appeared to be one barrier that was destined to hold. But then, in 1994, a Mexican physicist by the name of Miguel Alcubierre came along with proposed method for stretching the fabric of space-time in way which would, in theory, allow FTL travel to take pace.
In short, the method involves stretching the fabric of space in a wave which would in theory cause the space ahead of an object to contract while the space behind it would expand. An object inside this wave (let’s say, a spaceship) would then be able to ride this region, known as a “warp bubble” of flat space. Since the ship is not moving within this bubble, but is being carried along as the region itself moves, conventional relativistic effects such as time dilation would not apply, hence the rules of space time and relativity would cease to be of concern. One of the reasons for this is because this method would not rely on moving faster than light in the local sense, since a light beam within this bubble would still always move faster than the ship. It is only “faster than light” in the sense that the ship could reach its destination faster than a beam of light that was travelling outside the warp bubble.
However, there is are few problems with this theory. For one, there are no known methods to create such a warp bubble in a region of space that would not already contain one. Second, assuming there was a way to create such a bubble, there is not yet any known way of leaving once inside it. As a result, the Alcubierre drive (or metric) remains in the category of theory at this time. Mathematically, it can be represented by the following equation: ds2= – (α2 – β1β1) dt2 + 2β1 dx1 dt + γijdx1 dxj, where α is the lapse function that gives the interval of proper time between nearby hypersurfaces, βi is the shift vector that relates the spatial coordinate systems on different hypersurfaces and γij is a positive definite metric on each of the hypersurfaces.
We have written many articles about the Alcubierre “Warp” Drive for Universe Today. Here’s an article about the possibility of warp drives, and here’s an article about warp drives and cloaking devices.
If you’d like more info on the Alcubierre “Warp” Drive, check out an article from Wikipedia. Also, check out another article about the warp drive spaceship engine.
We’ve also recorded an entire episode of Astronomy Cast all about Light Echoes. Listen here, Episode 215: Light Echoes.
Sources:
http://en.wikipedia.org/wiki/Alcubierre_drive
http://en.wikipedia.org/wiki/Einstein_field_equations
http://en.wikipedia.org/wiki/Hypersurface
http://en.wikipedia.org/wiki/Faster-than-light
It's sixteen years since Miguel Alcubierre suggested that faster-than-light travel might be achieved by generating a warp bubble that contracts space-time ahead of the spaceship and expands it behind. Now a metamaterial test laboratory is available to see if this idea really could work. Image sourced from: andersoninstitute.com
The Alcubierre drive is one of the better known warp drive on paper models – where a possible method of warp drive seems to work mathematically as long as you don’t get too hung up on real world physics and some pesky boundary issues.
Recently the Alcubierre drive concept has been tested within mathematically modeled metamaterial – which can provide a rough analogy of space-time. Interestingly, in turns out that under these conditions the Alcubierre drive is unable to break the light barrier – but quite capable of doing 25% of light speed, which is not what you would call slow.
OK, so two conceptual issues to grapple with here. What the heck is an Alcubierre drive – and what the heck is metamaterial?
The Alcubierre drive is a kind of mathematical thought experiment where you imagine your spacecraft has a drive mechanism capable of warping a bubble of space-time such that the component of bubble in front of you contracts bringing points ahead of you closer – while the bubble behind you expands, moving what’s behind you further away.
This warped geometry moves the spacecraft forward, like a surfer on a wave of space-time. Maintaining this warp dynamically and continuously as the ship moves forward could result in faster-than-light velocities from the point of view of an observer outside the bubble – while the ship hardly moves at all relative to the local space-time within the bubble. Indeed throughout the journey the crew experience free fall conditions and are not troubled by G forces.
Standard images used to describe the Alcubierre drive. Left: Want to make the Kessel run in 12 parsecs? No problem - just compress the Kessel run into 12 parsecs. Right: The Alcubierre concept can be thought of as a spaceship surfing on a wave of space-time. Images sourced from daviddarling.info.
Some limitations of the Alcubierre drive model are that although the mathematics can suggest that forward movement of the ship is theoretically possible, how it might start and then later stop at its destination are not clear. The mechanism underlying generation of the bubble also remains to be explained. To warp space-time, you must redistribute mass or energy density in some way. If this involves pushing particles out to the edges of the bubble this risks a situation where particles at the boundary of the bubble would be moving faster than light within the frame of reference of space-time external to the bubble – which would violate a fundamental principle of general relativity.
There are various work-around solutions proposed, involving negative energy, exotic matter and tachyons – although you are well down the rabbit-hole by this stage. Nonetheless, if you can believe six impossible things before breakfast, then why not an Alcubierre drive too.
Now, metamaterials are matrix-like structures with geometric properties that can control and shape electromagnetic waves (as well as acoustic or seismic waves). To date, such materials have not only been theorized, but built – at least with the capacity to manipulate long wavelength radiation. But theoretically, very finely precisioned metamaterials might be able to manipulate optical and shorter wavelengths – creating the potential for invisibility cloaks and spacecraft cloaking devices… at least, theoretically.
Anyhow, metamaterials capable of manipulating most of the electromagnetic spectrum can be mathematically modeled – even if they can’t be built with current technologies. This modeling has been used to create virtual black holes and investigate the likelihood of Hawking radiation – so why not use the same approach to test an Alcubierre warp drive?
It turns out that the material parameters of even so-called ‘perfect’ metamaterial will not allow the Alcubierre drive to break light speed, but will allow it to achieve 25% light speed – being around 75,000 kilometres a second. This gets you to the Alpha Centauri system in about seventeen years, assuming acceleration and deceleration are only small components of the journey.
Whether the limitations imposed by metamaterial in this test are an indication that it cannot adequately emulate the warping of space-time – which the Alcubierre drive needs to break light speed – or whether the Alcubierre drive just can’t do it, remains an open question. What’s surprising and encouraging is that the drive could actually work… a bit.
Further reading: Smolyaninov, I. Metamaterial-based model of the Alcubierre warp drive.
The Hubble Volume
Redshifted light allows us to see objects like galaxies as they existed in the distant past; but we cannot see all events that occurred in our Universe during its history. Because our cosmos is expanding, the light from some objects is simply too far away for us ever to see.
The physics of that boundary rely, in part, on a chunk of surrounding spacetime called the Hubble volume. Here on Earth, we define the Hubble volume by measuring something called the Hubble parameter (H0), a value that relates the apparent recession speed of distant objects to their redshift. It was first calculated in 1929, when Edwin Hubble discovered that faraway galaxies appeared to be moving away from us at a rate that was proportional to the redshift of their light.
Fit of redshift velocities to Hubble’s law. Credit: Brews Ohare
Dividing the speed of light by H0, we get the Hubble volume. This spherical bubble encloses a region where all objects move away from a central observer at speeds less than the speed of light. Correspondingly, all objects outside of the Hubble volume move away from the center faster than the speed of light.
Yes, “faster than the speed of light.” How is this possible?
The Magic of Relativity
The answer has to do with the difference between special relativity and general relativity. Special relativity requires what is called an “inertial reference frame” – more simply, a backdrop. According to this theory, the speed of light is the same when compared in all inertial reference frames. Whether an observer is sitting still on a park bench on planet Earth or zooming past Neptune in a futuristic high-velocity rocketship, the speed of light is always the same. A photon always travels away from the observer at 300,000,000 meters per second, and he or she will never catch up.
General relativity, however, describes the fabric of spacetime itself. In this theory, there is no inertial reference frame. Spacetime is not expanding with respect to anything outside of itself, so the the speed of light as a limit on its velocity doesn’t apply. Yes, galaxies outside of our Hubble sphere are receding from us faster than the speed of light. But the galaxies themselves aren’t breaking any cosmic speed limits. To an observer within one of those galaxies, nothing violates special relativity at all. It is the space in between us and those galaxies that is rapidly proliferating and stretching exponentially.
The Observable Universe
Now for the next bombshell: The Hubble volume is not the same thing as the observable Universe.
To understand this, consider that as the Universe gets older, distant light has more time to reach our detectors here on Earth. We can see objects that have accelerated beyond our current Hubble volume because the light we see today was emitted when they were within it.
Strictly speaking, our observable Universe coincides with something called the particle horizon. The particle horizon marks the distance to the farthest light that we can possibly see at this moment in time – photons that have had enough time to either remain within, or catch up to, our gently expanding Hubble sphere.
And just what is this distance? A little more than 46 billion light years in every direction – giving our observable Universe a diameter of approximately 93 billion light years, or more than 500 billion trillion miles.
The observable universe, more technically known as the particle horizon.
(A quick note: the particle horizon is not the same thing as the cosmological event horizon. The particle horizon encompasses all the events in the past that we can currently see. The cosmological event horizon, on the other hand, defines a distance within which a future observer will be able to see the then-ancient light our little corner of spacetime is emitting today.
In other words, the particle horizon deals with the distance to past objects whose ancient light that we can see today; the cosmological event horizon deals with the distance that our present-day light that will be able to travel as faraway regions of the Universe accelerate away from us.)
Dark Energy
Thanks to the expansion of the Universe, there are regions of the cosmos that we will never see, even if we could wait an infinite amount of time for their light to reach us. But what about those areas just beyond the reaches of our present-day Hubble volume? If that sphere is also expanding, will we ever be able to see those boundary objects?
This depends on which region is expanding faster – the Hubble volume or the parts of the Universe just outside of it. And the answer to that question depends on two things: 1) whether H0 is increasing or decreasing, and 2) whether the Universe is accelerating or decelerating. These two rates are intimately related, but they are not the same.
In fact, cosmologists believe that we are actually living at a time when H0 is decreasing; but because of dark energy, the velocity of the Universe’s expansion is increasing.
That may sound counterintuitive, but as long as H0 decreases at a slower rate than that at which the Universe’s expansion velocity is increasing, the overall movement of galaxies away from us still occurs at an accelerated pace. And at this moment in time, cosmologists believe that the Universe’s expansion will outpace the more modest growth of the Hubble volume.
So even though our Hubble volume is expanding, the influence of dark energy appears to provide a hard limit to the ever-increasing observable Universe.
Our Earthly Limitations
Cosmologists seem to have a good handle on deep questions like what our observable Universe will someday look like and how the expansion of the cosmos will change. But ultimately, scientists can only theorize the answers to questions about the future based on their present-day understanding of the Universe. Cosmological timescales are so unimaginably long that it is impossible to say much of anything concrete about how the Universe will behave in the future. Today’s models fit the current data remarkably well, but the truth is that none of us will live long enough to see whether the predictions truly match all of the outcomes.
Disappointing? Sure. But totally worth the effort to help our puny brains consider such mind-bloggling science – a reality that, as usual, is just plain stranger than fiction.
About Vanessa Jane Vanessa earned her bachelor's degree in Astronomy and Physics in 2009 from Wheaton College in Massachusetts. Her credits in astronomy include observing and analyzing eclipsing binary star systems and taking a walk on the theory side as a NSF REU intern, investigating the expansion of the Universe by analyzing its traces in observations of type 1a supernovae. In her spare time she enjoys writing about astrophysics, cosmology, biology, and medicine, making delicious vegetarian meals, taking adventures with her husband and/or Nikon D50, and saving the world.
Dropping out of warp speed could have deadly results.
(Image: Paramount Pictures/CBS Studios)
Planning a little space travel to see some friends on Kepler 22b? Thinking of trying out your newly-installed FTL3000 Alcubierre Warp Drive to get you there in no time? Better not make it a surprise visit — your arrival may end up disintegrating anyone there when you show up.
“Warp” technology and faster-than-light (FTL) space travel has been a staple of science fiction for decades. The distances in space are just so vast and planetary systems — even within a single galaxy — are spaced so far apart, such a concept is needed to make casual human exploration feasible (and fit within the comforts of people’s imagination as well… nobody wants to think about Kirk and Spock bravely going to some alien planet while everyone they’ve ever known dies of old age!)
While many factors involving FTL travel are purely theoretical — and may remain in the realm of imagination for a very long time, if not ever — there are some concepts that play well with currently-accepted physics.
The Alcubierre warp drive is one of those concepts.
Proposed by Mexican theoretical physicist Miguel Alcubierre in 1994, the drive would propel a ship at superluminal speeds by creating a bubble of negative energy around it, expanding space (and time) behind the ship while compressing space in front of it. In much the same way that a surfer rides a wave, the bubble of space containing the ship and its passengers would be pushed at velocities not limited to the speed of light toward a destination.
Of course, when the ship reaches its destination it has to stop. And that’s when all hell breaks loose.
Researchers from the University of Sydney have done some advanced crunching of numbers regarding the effects of FTL space travel via Alcubierre drive, taking into consideration the many types of cosmic particles that would be encountered along the way. Space is not just an empty void between point A and point B… rather, it’s full of particles that have mass (as well as some that do not.) What the research team — led by Brendan McMonigal, Geraint Lewis, and Philip O’Byrne — has found is that these particles can get “swept up” into the warp bubble and focused into regions before and behind the ship, as well as within the warp bubble itself.
When the Alcubierre-driven ship decelerates from superluminal speed, the particles its bubble has gathered are released in energetic outbursts. In the case of forward-facing particles the outburst can be very energetic — enough to destroy anyone at the destination directly in front of the ship.
“Any people at the destination,” the team’s paper concludes, “would be gamma ray and high energy particle blasted into oblivion due to the extreme blueshifts for [forward] region particles.”
In other words, don’t expect much of a welcome party.
Another thing the team found is that the amount of energy released is dependent on the length of the superluminal journey, but there is potentially no limit on its intensity.
“Interestingly, the energy burst released upon arriving at the destination does not have an upper limit,” McMonigal told Universe Today in an email. “You can just keep on traveling for longer and longer distances to increase the energy that will be released as much as you like, one of the odd effects of General Relativity. Unfortunately, even for very short journeys the energy released is so large that you would completely obliterate anything in front of you.”
So how to avoid disintegrating your port of call? It may be as simple as just aiming your vessel a bit off to the side… or, it may not. The research only focused on the planar space in front of and behind the warp bubble; deadly postwarp particle beams could end up blown in all directions!
Luckily for Vulcans, Tatooinians and any acquaintances on Kepler 22b, the Alcubierre warp drive is still very much theoretical. While the mechanics work with Einstein’s General Theory of Relativity, the creation of negative energy densities is an as-of-yet unknown technology — and may be impossible.
Which could be a very good thing for us, should someone out there be planning a surprise visit our way!
Read more about Alcubierre warp drives here, and you can download the full University of Sydney team’s research paper here.
Thanks to Brendan McMonigal and Geraint Lewis for the extra information!
Main image © Paramount Pictures and CBS Studios. All rights reserved.
The Alcubierre “Warp” Drive
by Matt Williams
on August 21, 2011
It’s always a welcome thing to learn that certain ideas that are common to science fiction have a basis in science fact. Cryogenic freezers, laser guns, robots, silicate implants… and let’s not forget the warp drive! Believe it or not, this concept – alternately known as FTL (Faster-Than-Light), Hyperspace, Warp drive, et al – actually has one foot in the world of real science. In physics, it is what is known as the Alcubierre Drive (or the Alcubierre Metric). On paper, it is a speculative, but apparently valid, solution of the Einstein field equations, specifically how space, time and energy interact. In this particular mathematical model of spacetime, there are features that are apparently reminiscent of the fictional “warp drive” or “hyperspace” from notable science fiction franchises, hence the association.
Since Einstein first proposed his field equations in the early 20th century, scientists have been operating under the strictures imposed by a relativistic universe. One of these strictures is the belief that the speed of light is unbreakable and hence, that there will never be such a thing as FTL space travel or exploration. Even though subsequent generations of scientists and engineers managed to break the sound barrier and defeat the pull of the Earth’s gravitational field, the speed of light appeared to be one barrier that was destined to hold. But then, in 1994, a Mexican physicist by the name of Miguel Alcubierre came along with proposed method for stretching the fabric of space-time in way which would, in theory, allow FTL travel to take pace.
In short, the method involves stretching the fabric of space in a wave which would in theory cause the space ahead of an object to contract while the space behind it would expand. An object inside this wave (let’s say, a spaceship) would then be able to ride this region, known as a “warp bubble” of flat space. Since the ship is not moving within this bubble, but is being carried along as the region itself moves, conventional relativistic effects such as time dilation would not apply, hence the rules of space time and relativity would cease to be of concern. One of the reasons for this is because this method would not rely on moving faster than light in the local sense, since a light beam within this bubble would still always move faster than the ship. It is only “faster than light” in the sense that the ship could reach its destination faster than a beam of light that was travelling outside the warp bubble.
However, there is are few problems with this theory. For one, there are no known methods to create such a warp bubble in a region of space that would not already contain one. Second, assuming there was a way to create such a bubble, there is not yet any known way of leaving once inside it. As a result, the Alcubierre drive (or metric) remains in the category of theory at this time. Mathematically, it can be represented by the following equation: ds2= – (α2 – β1β1) dt2 + 2β1 dx1 dt + γijdx1 dxj, where α is the lapse function that gives the interval of proper time between nearby hypersurfaces, βi is the shift vector that relates the spatial coordinate systems on different hypersurfaces and γij is a positive definite metric on each of the hypersurfaces.
We have written many articles about the Alcubierre “Warp” Drive for Universe Today. Here’s an article about the possibility of warp drives, and here’s an article about warp drives and cloaking devices.
If you’d like more info on the Alcubierre “Warp” Drive, check out an article from Wikipedia. Also, check out another article about the warp drive spaceship engine.
We’ve also recorded an entire episode of Astronomy Cast all about Light Echoes. Listen here, Episode 215: Light Echoes.
Sources:
http://en.wikipedia.org/wiki/Alcubierre_drive
http://en.wikipedia.org/wiki/Einstein_field_equations
http://en.wikipedia.org/wiki/Hypersurface
http://en.wikipedia.org/wiki/Faster-than-light
About Matt Williams
Author, freelance writer, educator, Taekwon-Do instructor, and loving hubby, son and Island boy!Astronomy Without A Telescope – Warp Drive On Paper
by Steve Nerlich
on October 30, 2010
It's sixteen years since Miguel Alcubierre suggested that faster-than-light travel might be achieved by generating a warp bubble that contracts space-time ahead of the spaceship and expands it behind. Now a metamaterial test laboratory is available to see if this idea really could work. Image sourced from: andersoninstitute.com
The Alcubierre drive is one of the better known warp drive on paper models – where a possible method of warp drive seems to work mathematically as long as you don’t get too hung up on real world physics and some pesky boundary issues.
Recently the Alcubierre drive concept has been tested within mathematically modeled metamaterial – which can provide a rough analogy of space-time. Interestingly, in turns out that under these conditions the Alcubierre drive is unable to break the light barrier – but quite capable of doing 25% of light speed, which is not what you would call slow.
OK, so two conceptual issues to grapple with here. What the heck is an Alcubierre drive – and what the heck is metamaterial?
The Alcubierre drive is a kind of mathematical thought experiment where you imagine your spacecraft has a drive mechanism capable of warping a bubble of space-time such that the component of bubble in front of you contracts bringing points ahead of you closer – while the bubble behind you expands, moving what’s behind you further away.
This warped geometry moves the spacecraft forward, like a surfer on a wave of space-time. Maintaining this warp dynamically and continuously as the ship moves forward could result in faster-than-light velocities from the point of view of an observer outside the bubble – while the ship hardly moves at all relative to the local space-time within the bubble. Indeed throughout the journey the crew experience free fall conditions and are not troubled by G forces.
Standard images used to describe the Alcubierre drive. Left: Want to make the Kessel run in 12 parsecs? No problem - just compress the Kessel run into 12 parsecs. Right: The Alcubierre concept can be thought of as a spaceship surfing on a wave of space-time. Images sourced from daviddarling.info.
Some limitations of the Alcubierre drive model are that although the mathematics can suggest that forward movement of the ship is theoretically possible, how it might start and then later stop at its destination are not clear. The mechanism underlying generation of the bubble also remains to be explained. To warp space-time, you must redistribute mass or energy density in some way. If this involves pushing particles out to the edges of the bubble this risks a situation where particles at the boundary of the bubble would be moving faster than light within the frame of reference of space-time external to the bubble – which would violate a fundamental principle of general relativity.
There are various work-around solutions proposed, involving negative energy, exotic matter and tachyons – although you are well down the rabbit-hole by this stage. Nonetheless, if you can believe six impossible things before breakfast, then why not an Alcubierre drive too.
Now, metamaterials are matrix-like structures with geometric properties that can control and shape electromagnetic waves (as well as acoustic or seismic waves). To date, such materials have not only been theorized, but built – at least with the capacity to manipulate long wavelength radiation. But theoretically, very finely precisioned metamaterials might be able to manipulate optical and shorter wavelengths – creating the potential for invisibility cloaks and spacecraft cloaking devices… at least, theoretically.
Anyhow, metamaterials capable of manipulating most of the electromagnetic spectrum can be mathematically modeled – even if they can’t be built with current technologies. This modeling has been used to create virtual black holes and investigate the likelihood of Hawking radiation – so why not use the same approach to test an Alcubierre warp drive?
It turns out that the material parameters of even so-called ‘perfect’ metamaterial will not allow the Alcubierre drive to break light speed, but will allow it to achieve 25% light speed – being around 75,000 kilometres a second. This gets you to the Alpha Centauri system in about seventeen years, assuming acceleration and deceleration are only small components of the journey.
Whether the limitations imposed by metamaterial in this test are an indication that it cannot adequately emulate the warping of space-time – which the Alcubierre drive needs to break light speed – or whether the Alcubierre drive just can’t do it, remains an open question. What’s surprising and encouraging is that the drive could actually work… a bit.
Further reading: Smolyaninov, I. Metamaterial-based model of the Alcubierre warp drive.
No comments:
Post a Comment